
A NOTE ON THE STABLE BERNSTEIN THEOREM
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Let (Mn, g) ↪→ Rn+1 be an immersed, two-sided, stable minimal hypersurface. The
Bernstein problem asks whether M is a flat hyperplane.

When M is graphical, the problem was solved for n ⩽ 7 in [4, 15, 13, 1, 21], while a
counterexample when n ⩾ 8 was constructed in [5]. In [5] the authors also construct an
immersed, two-sided, stable minimal hypersurfaces M7 ↪→ R8 that is not a hyperplane.

The n = 2 case of the Bernstein problem has been solved by [8, 14, 19]. Recently, the
n = 3 case was resolved by different methods in [10, 11, 9]. The idea in [11] has been
pushed to n = 4 and n = 5 in the very recent works [12], and [17], respectively. These
proofs show that M has Euclidean volume growth. Hence, leveraging the Schoen–Simon–
Yau curvature estimate [20], it follows that M must be flat. When n = 6, the curvature
estimate is proved in [3] assuming that M has extrinsic Euclidean volume growth.

The aim of this note is to give a new point of view on the recent proofs [11, 12, 17], and
to show an obstruction when n = 6. Let us denote ∆, A the Laplacian, and the second
fundamental form of M , respectively. Let u be a positive eigenfunction of the stability
operator, so that

∆u ⩽ −|A|2u. (1)

Let r be the distance function from the origin on Rn+1. We consider a direct µ-bubble
construction on (M, g), associated to the energy

E(Ω) :=

∫
∂Ω

r−βuγ −
∫
Ω

hr−βuγ, (2)

for some constants β, γ > 0 to be chosen. For a fixed r0 > 0, we will make the choice
h = r−1 cot

(
ε log(r/r0)

)
, with ε ≪ 1. Hence, minimizing (2) gives a stable µ-bubble in

the annular region
{
r0 < r < π1/εr0

}
, for every r0 > 0. Denoting Σ := ∂Ω, we aim at

showing that, for some conformal change g̃ = r−2pg of Σ (when n ∈ {3, 4} we can take
p = 0), the µ-bubble stability inequality implies the spectral Ricci lower bound1∫

Σ

(
n− 2

n− 3
|∇̃η2|+ R̃ic · η2

)
dṼ ⩾ λ

∫
Σ

η2dṼ , ∀ η ∈ C∞(Σ), (3)

for some λ > 0. Then by [2, Theorem 1], (Σ, g̃) will enjoy a volume upper bound depending
on n, λ. Hence, going back to g, and using the Michael–Simon isoperimetric inequality
[18, 6], M shall have Euclidean volume growth. Notice that n−2

n−3
is the largest constant

that one can put in (3) for this strategy to work, due to [2, Remark 4].
The derivation from the stability inequality of (2) to (3) eventually boils down to

showing that three matrices are negative definite for some careful choice of parameters.

Let us point out the following relation between (2) and the µ-bubble arguments in
[10, 12, 17]. Suppose u satisfies (1). Then, after the Gulliver-Lawson conformal change,

one can choose the spectral biRicci eigenfunction in [12, 17] to be r
n−2
2 u. Taking this

transformation, and the conformal change into account, the standard µ-bubble energies
in [12, 17] are thus transformed to (2) for some choices of β, γ.

1When n = 3, the constant n−2
n−3 in (3) can be substituted with a sufficiently large number.
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The bi-Ricci curvature, which appeared in [12, 17], does not play a role in our argument.
Finally, when n = 6, there is no choice of parameters so that the present strategy works;
see Lemma 8. This seems to suggest that for n ⩾ 6 a new idea has to be introduced if
one is willing to show that M has Euclidean volume growth.

Notations. In this note we assume n ⩾ 3. We use g to denote the metric on the stable
minimal hypersurface M , and A,∇,∆, etc, for the objects associated with (M, g). We
use g to denote the metric on the µ-bubble Σ, and A,∇,∆, etc, for the objects associated

with (Σ, g). The objects after the conformal change on Σ will be denoted g̃, R̃ic, ∇̃, etc.
For a function f , and vector field X, we write fX := ∂f/∂X. Following [2], we use Ric(x)
to denote the minimal eigenvalue of the Ricci tensor at the point x. We denote with ν
the unit normal to the (n− 1)-dimensional manifold Σ in M , and with ν the unit normal
to the n-dimensional manifold M in Rn+1.

Acknowledgments. We warmly thank Otis Chodosh, Chao Li, and Luciano Mari for
useful suggestions about this note.

1. Preliminaries

Lemma 1 ([12, Proposition 3.2]). Let Mn be a minimal hypersurface in Rn+1. Then:

(1) ∇2
r = r−1g − r−1dr2 − rνA,

(2) ∆r = nr−1 − r−1|∇r|2.

Lemma 2 ([16, Theorem 7.30]). Let Σn−1 be a manifold and f ∈ C∞(Σ). Consider the
conformal metric g̃ = e2fg. Then we have

R̃ic = Ric−(n− 3)∇2f + (n− 3)df 2 − (∆f)g − (n− 3)|∇f |2g. (4)

Lemma 3. For any ε, r0 > 0 and unit vector field ν on M , the function

h := h(r) = r−1 cot
(
ε log(r−1

0 r)
)

satisfies

−hν − hr−1rν − εh2 − εr−2 ⩽ 0.

Proof. We may directly calculate

−hν − hr−1rν − εh2 − εr−2 = ε(h2 + r−2)(rν − 1) ⩽ 0. □

2. The µ-bubble construction

Let (Mn, g) be a immersed two-sided stable minimal surface in Rn+1. Thus we have∫
M

|∇φ|2 − |A|2φ2 ⩾ 0, ∀φ ∈ C∞
0 (M).

Therefore, we can choose a positive u ∈ C∞(M) such that

∆u ⩽ −|A|2u.
For constants β, γ > 0 to be determined, consider the µ-bubble defined by minimizing

the energy

E(Ω) =

∫
∂Ω

r−βuγ −
∫
Ω

hr−βuγ. (5)

Let Σ := ∂Ω be the boundary of the µ-bubble. Let g, A,H, ν denote the induced metric,
second fundamental form, mean curvature, and outer unit normal of Σn−1 ↪→Mn. Below
we make the agreement that all the integrals are taken on Σ with respect to the volume
form induced by g.
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Given any φ ∈ C∞(Σ), consider a variation {Στ} of Σ, so that the variational vector
field at τ = 0 equals φν. Since Σ is a critical point of (5), the first variation gives

0 =
dE(Στ )

dτ

∣∣∣
τ=0

=

∫
r−βuγφ

[
H − βr−1rν + γu−1uν − h

]
.

Hence
H = h− γu−1uν + βr−1rν . (6)

Denote Y := u−1uν , Z := r−1rν , so we have H = h− γY + βZ.

2.1. Source terms from the stability inequality. By calculating the second variation
0 ⩽ d2E

dτ2
|τ=0, we obtain the following:

0 ⩽
∫
r−βuγφ

[
−∆φ− |A|2φ− Ricννφ+ βr−2r2νφ− βr−1φ∇2

r(ν, ν) + βr−1⟨∇r,∇φ⟩

− γu−2u2νφ+ γu−1φ∆u− γu−1φ∆u− γu−1φHuν − γu−1⟨∇u,∇φ⟩ − hνφ
]
.

There are two ways to expand the term ∇2
r(ν, ν), thus we set a new variable to keep this

degree of freedom. For a constant t ∈ R to be determined, we split

∇2
r(ν, ν) = t

(
∆r −∆r −Hrν

)
+ (1− t)∇2

r(ν, ν)

= ntr−1 − tr−1|∇r|2 − t∆r − tHrν + (1− t)r−1

− (1− t)r−1r2ν − (1− t)rνAνν .

(7)

Plugging this into the stability inequality, we obtain:

0 ⩽
∫
r−βuγφ

[
−∆φ− |A|2φ− Ricννφ+ βr−2r2νφ

+
[
− (nt− t+ 1)βr−2φ+ tβr−2|∇r|2φ

]
+ tβr−1φ∆r + tβr−1φHrν

+ (1− t)βr−2r2νφ+ (1− t)βr−1rνAννφ+ βr−1⟨∇r,∇φ⟩

− γu−2u2νφ+ γu−1φ∆u− γu−1φ∆u− γu−1φHuν − γu−1⟨∇u,∇φ⟩ − hνφ
]
.

There are sixteen terms in this integral, let us denote them by [[1]]∼ [[16]] respectively.
For another test function ψ ∈ C∞(Σ), set φ := rβ/2u−γ/2ψ. We simplify each term as
follows: (for better readability, we will drop the integration sign in all the computations

below; the symbol
∗
= means we are using integration by parts)

[[1]] = −r−β/2uγ/2ψ∆(rβ/2u−γ/2ψ)
∗
= ∇(r−β/2uγ/2ψ) · ∇(rβ/2u−γ/2ψ),

[[2]] = −|A|2ψ2,

[[3]] = −Ricννψ
2 = A

2
(ν, ν)ψ2 (where A

2

ij := Aipg
pqAqj),

[[4]] = βZ2ψ2,

[[5]] = −(nt− t+ 1)βr−2ψ2 + tβr−2ψ2|∇r|2,
[[6]] = tβr−1ψ2∆r

∗
= −tβ∇(r−1ψ2) · ∇r,

[[7]] = tβψ2(h− γY + βZ)Z,

[[8]] = (1− t)βψ2Z2,

[[9]] = (1− t)βψ2r−1rνAνν ,

[[10]] = βr−β/2uγ/2ψr−1∇r · ∇(rβ/2u−γ/2ψ),

[[11]] = −γY 2ψ2,

[[12]] = γu−1ψ2∆u ⩽ −γ|A|2ψ2,

[[13]] = −γu−1ψ2∆u
∗
= γ∇(u−1ψ2) · ∇u,



4 GIOACCHINO ANTONELLI AND KAI XU

[[14]] = −γψ2(h− γY + βZ)Y ,

[[15]] = −γr−β/2uγ/2ψu−1∇u · ∇(rβ/2u−γ/2ψ),

[[16]] = −hνψ2.

2.2. Target terms from spectral Ricci curvature. For p ∈ R, consider the conformal
metric g̃ = r−2pg on the µ bubble Σ. Let ẽ be a g̃-unit measurable vector field such that

R̃ic(ẽ, ẽ) = R̃ic everywhere on Σ. Then set e = r−pẽ (which is g-unit). Let {ei}2⩽i⩽n−1 be
measurable g-unit vector fields that form an orthonormal frame on Σ along with e.

We aim at showing that the stability inequality implies the spectral Ricci bound

s

∫ (n− 2

n− 3
|∇̃η|2 + R̃ic · η2

)
dṼ ⩾ ε

∫
η2 dṼ , (8)

on Σ, for some choice s > 02 and sufficiently small ε > 0. When n = 3 one may replace
n−2
n−3

with a sufficiently large positive number, and the same strategy still works.
The first step for achieving our goal is to convert (8) back to the original metric g,

and obtain a target expression. The integrals below are on Σ, and when we omit the
volume form, we are assuming the integration is with respect to g. Using Lemma 2 with
f = −p log r, we have

J :=

∫ (n− 2

n− 3
s|∇̃η|2 + sR̃ic(ẽ, ẽ)η2

)
dṼ =

∫
r(3−n)p

(n− 2

n− 3
s|∇η|2 + sR̃ic(e, e)η2

)
=

∫
n− 2

n− 3
sr(3−n)p|∇η|2 + r(3−n)ps

[
Ric(e, e) + (n− 3)p∇2 log r(e, e)

+ (n− 3)p2|∇e log r|2 + p∆ log r − (n− 3)p2|∇ log r|2
]
η2.

To remove the powers on r, we make the choice η := r
n−3
2

pψ and simplify:

J =

∫
n− 2

n− 3
s|∇ψ|2 + (n− 2)spψ∇ψ · ∇ log r +

1

4
(n− 2)(n− 3)sp2ψ2|∇ log r|2

+ sψ2Ric(e, e) + (n− 3)spψ2∇2 log r(e, e) + (n− 3)sp2ψ2r−2r2e

− 2spψ∇ψ · ∇ log r − (n− 3)sp2ψ2|∇ log r|2.
There are two complex terms. We rewrite the first using Gauss’ equations:

sRic(e, e) = s
∑
i

Reiie = s
∑
i

(
Reiie + AeeAii − A2

ei

)
= s

∑
i

(
AeeAii − A

2

ei

)
+ s

∑
i

(
AeeAii − A2

ei

)
,

and for the second we notice:

(n− 3)spψ2∇2 log r(e, e) = (n− 3)spψ2
[
∇2

log r(e, e)− Aeer
−1rν

]
= (n− 3)spψ2

[
r−2 − 2r−2r2e − r−1rνAee − r−1rνAee

]
.

Combining the expressions of the same type, we are led to define the following terms

[[17]]∼ [[25]], that satisfy
∑25

k=17 [[k]] + s
∫ (

n−2
n−3

|∇̃η|2 + R̃ic(ẽ, ẽ)η2
)
dṼ = 0. As usual, we

omit the integral sign in the expressions.

[[17]] = −n−2
n−3

s|∇ψ|2,
[[18]] = −(n− 4)spψ∇ψ · ∇ log r,3

2The appearance of α-biRicci curvature in [17] corresponds to the matching parameter s in (8).
3When n = 3, this term is 2spψ∇ψ · ∇ log r, thus the (1, 3)-entry of (15) is − 1

2β(2t− 1) + sp.
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[[19]] = sψ2
∑

i

(
A

2

ei − AeeAii

)
,

[[20]] = sψ2
∑

i

(
A2

ei − AeeAii

)
,

[[21]] = (n− 3)spψ2r−1rνAee,

[[22]] = (n− 3)spψ2r−1rνAee,

[[23]] = 1
4
(6− n)(n− 3)sp2ψ2r−2|∇r|2,

[[24]] = (n− 3)s(2p− p2)ψ2r−2r2e ,

[[25]] = −(n− 3)spψ2r−2.

2.3. Algebraic reductions. We aim to arrange the terms [[1]]∼ [[25]] into three groups,
and turn the proof of the main theorem into the negative definiteness of three correspond-
ing matrices. As usual, we suppress the integral signs in this subsection.

We start with collecting the miscellaneous terms:

IR = [[5]] + [[16]] + [[23]] + [[24]] + [[25]]. (9)

Let ε denote a sufficiently small number. Notice that |∇r|2 + r2ν + r2ν = 1. We use this
to decompose [[5]] and [[25]], and obtain (recall Z = r−1rν)

ψ−2IR ⩽
[
− hν − hr−1rν − εh2 − 2εr−2

]
+ C1r

−2|∇r|2 + C2r
−2r2ν + C3Z

2 + hZ

+
[
2εr−2|∇r|2 + 2εr−2r2ν + εh2 + 2εZ2

]
,

(10)

where

C1 := −
[
nt− 2t+ 1

]
β − (n− 3)sp+ (n− 3)smax

{
2p− p2, 0

}
(11)

+
1

4
(6− n)(n− 3)sp2, (12)

C2 := −
[
nt− t+ 1

]
β − (n− 3)sp, (13)

C3 := −
[
nt− 2t+ 1

]
β − (n− 3)sp. (14)

The reason to add a −hr−1rν term in (10) is clear by Lemma 3.

Lemma 4 (Gradient terms). Set the matrix

P∇ =

 1− n−2
n−3

s γ
2

−β(2t−1)+(n−4)sp
2

γ
2

γ2

4
− γ −βγ

4

−β(2t−1)+(n−4)sp
2

−βγ
4

β2

4
+ tβ + C1

 , (15)

and, for ε > 0, collect the gradient terms

I∇ := [[1]] + [[6]] + [[10]] + [[13]] + [[15]] + [[17]] + [[18]] + (C1 + 2ε)ψ2r−2|∇r|2. (16)

If P∇ < 0, then for sufficiently small ε > 0 we have I∇ ⩽ 0.

Proof. Set θ = r−β/2uγ/2. We compute (as usual, we suppress the integral sign for the
simplicity of expressions):

[[1]] = ∇(θψ) · ∇(θ−1ψ) = |∇ψ|2 − ψ2|∇ log θ|2, (17)

and
[[6]] = −2tβψ∇ψ · ∇ log r + tβψ2|∇ log r|2,
[[13]] = 2γψ∇ψ · ∇ log u− γψ2|∇ log u|2

(18)

and
[[10]] + [[15]] = βθψ∇ log r · ∇(θ−1ψ)− γθψ∇ log u · ∇(θ−1ψ)

= βψ∇ψ · ∇ log r − γψ∇ψ · ∇ log u+ 2ψ2|∇ log θ|2.
(19)
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We also expand

ψ2|∇ log θ|2 = β2

4
ψ2|∇ log r|2 + γ2

4
ψ2|∇ log u|2 − βγ

2
ψ2∇ log r · ∇ log u. (20)

Assembling (17)∼ (20) and adding up with [[17]] + [[18]] + (C1 + 2ε)ψ2|∇ log r|2, we get4

ψ−2I∇ =
(
1− n− 2

n− 3
s
) |∇ψ|2

ψ2
+
(γ2
4

− γ
)
|∇ log u|2 +

(β2

4
+ tβ + C1 + 2ε

)
|∇ log r|2

+ γ
∇ψ
ψ

· ∇ log u−
[
β(2t− 1) + (n− 4)sp

]∇ψ
ψ

· ∇ log r − βγ

2
∇ log u · ∇ log r.

The matrix P∇ is exactly the coefficient matrix of this quadratic form subtracted with
diag(0, 0, 2ε). Thus the assertion follows. □

Lemma 5 (Terms involving A). Set the matrix

PA :=

 s− n−1
n−2

γ 1
2

(
s− 2γ

n−2

)
1
2
(n− 3)sp

1
2

(
s− 2γ

n−2

)
1− n−1

n−2
γ 1

2
(1− t)β

1
2
(n− 3)sp 1

2
(1− t)β C2

 . (21)

If 2γ ⩾ max{1, s}, and PA < 0, then for sufficiently small ε > 0 we have

IA := [[3]] + [[9]] + [[12]] + [[19]] + [[21]] + (C2 + 2ε)ψ2r−2r2ν ⩽ 0. (22)

Proof. If 2γ ⩾ max{1, s}, then we can discard the cross curvature terms and estimate

ψ−2IA =
[
A

2

νν + A
2

νe +
∑
i

A
2

νi

]
+ (1− t)βr−1rνAνν + (n− 3)spr−1rνAee

+
[
− γA

2

νν − γA
2

ee − γ
∑
i

A
2

ii − 2γA
2

νe − 2γ
∑
i

A
2

νi − 2γ
∑
i

A
2

ei

− 2γ
∑
i<j

A
2

ij

]
+
[
− sAee

∑
i

Aii + s
∑
i

A
2

ei

]
+ (C2 + 2ε)r−2r2ν

⩽ (1− γ)A
2

νν − γA
2

ee − γ
∑
i

A
2

ii − sAee

∑
i

Aii

+ (1− t)βr−1rνAνν + (n− 3)spr−1rνAee + (C2 + 2ε)r−2r2ν .

Then we use the trace inequality and the fact
∑

iAii+Aee+Aνν = 0 to eliminate the Aii

term. Calling U = Aee, V = Aνν , W = r−1rν , this gives the result:

ψ−2IA ⩽ −γU2 + (1− γ)V 2 − γ

n− 2
(U + V )2 + sU(U + V )

+ (1− t)βVW + (n− 3)spUW + (C2 + 2ε)W 2.

The matrix PA is exactly the coefficient matrix of the previous quadratic form subtracted
with diag(0, 0, 2ε). Thus the assertion follows. □

Lemma 6 (Terms involving A and Y, Z). Set the matrix

PAY Z :=


s− n−1

n−2
1

n−2
− s

2

(
s
2
− 1

n−2

)
γ a1

1
n−2

− s
2

− 1
n−2

− (n−4)γ
2(n−2)

a2(
s
2
− 1

n−2

)
γ − (n−4)γ

2(n−2)
n−3
n−2

γ2 − γ a3
a1 a2 a3 a4

 , (23)

4Multiplying ψ−2 is only for the ease of expressions, one does not need to assume ψ ̸= 0.
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where we denote for convenience

a1 :=
β

n− 2
− sβ

2
+
n− 3

2
sp, a2 :=

1

2
+
tβ

2
− β

n− 2
,

a3 :=
( 1

n− 2
− t+ 1

2

)
βγ, a4 := C3 −

β2

n− 2
+ (2− t)β + tβ2.

For ε > 0, collect the terms

IA := [[2]] + [[20]] + [[22]], (24)

IY Z := [[4]] + [[7]] + [[8]] + [[11]] + [[14]] + ψ2(C3Z
2 + hZ + εh2 + 2εZ2). (25)

If s ⩽ 2 and PAY Z < 0, then for some sufficiently small ε > 0 we have IA + IY Z ⩽ 0.

Proof. Since s ⩽ 2, we can drop the cross curvature terms Aei, Aij and get

ψ−2IA ⩽ −A2
ee −

∑
i

A2
ii − sAee

∑
i

Aii + (n− 3)spAeeZ.

Using the trace inequality and noting that
∑

iAii = H − Aee = h − γY + βZ − Aee, we
further estimate

ψ−2IA ⩽ −A2
ee −

1

n− 2

(
h− γY + βZ − Aee

)2
− sAee

(
h− γY + βZ − Aee

)
+ (n− 3)spAeeZ.

(26)

Next, we have

ψ−2IY Z = βZ2 + tβ(h− γY + βZ)Z + (1− t)βZ2 − γY 2

− γ(h− γY + βZ)Y + C3Z
2 + hZ + ε(h2 + 2Z2)

= (2− t)βZ2 − γY 2 + (−γY + tβZ)(h− γY + βZ)

+ C3Z
2 + hZ + ε(h2 + 2Z2).

The lemma follows by computing the coefficient matrix of ψ−2(IA + IY Z), with variables
{Aee, h, Y, Z}. □

3. Proof of the Euclidean volume growth and stable Bernstein Theorem

From now on let us make the following assumptions.

Assumption 1. Let n ⩾ 3, and let γ, s, p, β > 0, t ∈ R be such that

0 < s ⩽ 2, 2γ ⩾ max{1, s}, P∇ < 0, PA < 0, PAY Z < 0. (27)

Notice that if all the conditions in Assumption 1 are met, then using Lemma 4∼ 6, and
Lemma 3, and (10), for some ε≪ 1 depending only on n, γ, s, p, β, t, we have

0 ⩽
16∑
k=1

[[k]] = s

∫ (n− 2

n− 3
|∇̃η|2 + R̃ic · η2

)
dṼ +

25∑
k=1

[[k]] (28)

⩽ s

∫ (n− 2

n− 3
|∇̃η|2 + R̃ic · η2

)
dṼ +

[
I∇ + IA + IA + IY Z

]
+

∫ [
− hν − hr−1rν − εh2 − 2εr−2

]
ψ2dV

⩽ s

∫ (n− 2

n− 3
|∇̃η|2 + R̃ic · η2

)
dṼ − ε

∫
r−2ψ2 dV. (29)
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Lemma 7. Let Mn ↪→ Rn+1 be a stable minimal two-sided hypersurfaces with n ⩾ 3. Let
γ, s, p, β > 0 and t ∈ R be such that Assumption 1 is verified. Fix ε ≪ 1 so that (29)
holds. For each r0 > 0, choose

h = r−1 cot
(
ε log(r/r0)

)
. (30)

Then there exists a stable µ-bubble Ω for the energy (5), with

B(0, r0) ⊂⊂ Ω ⊂⊂ B(0, π1/εr0), (31)

and moreover

vol(Σ) ⩽ C(s, ε)rn−1
0 .

Proof. Given the explicit expression of h in (30), the standard existence theory for µ-
bubbles [22] proves the existence of a stable µ-bubble Ω for the energy (5) satisfying (31).
Denote Σ = ∂Ω. By our derivations above, the conformal metric g̃ = r−2pg on Σ satisfies
the stability inequality (29). Recall the relation ψ = r

3−n
2

pη. Taking this transformation
and the conformal change into account, (29) is equivalent to∫ (n− 2

n− 3
|∇̃η|2 + R̃ic · η2

)
dṼ ⩾ s−1ε

∫
r2p−2η2 dṼ ⩾ Cr2p−2

0

∫
η2 dṼ .

Passing to the universal cover, we can assume M is simply connected. Then by [7], M
has one end, hence we can assume that Σ is connected. As a result, by [2, Theorem 1],
we have the volume bound

C ′r
−(n−1)(p−1)
0 ⩾ vol(Σ, g̃) =

∫
r−(n−1)p dV ⩾ Cr

−(n−1)p
0 vol(Σ).

This implies vol(Σ) ⩽ Crn−1
0 . □

Theorem 1. Let Mn ↪→ Rn+1 be a stable minimal two-sided hypersurfaces with n ⩾ 3.
Assume there are γ, s, p, β > 0, and t ∈ R such that Assumption 1 is verified. Then M
has Euclidean volume growth.

Proof. This is a direct consequence of Lemma 7 and Michael–Simon inequality [18] (see
also [6]). □

Lemma 8. If 3 ⩽ n ⩽ 5, there exist constants satisfying Assumption 1. If n = 6, there
is no choice of constants for which Assumption 1 is true.

Proof. By direct verification when n = 5 a choice that works is:

(s, p, γ, β, t) = (9/10, 1/2, 9/10, 1, 1/3).

When n ∈ {3, 4}, a choice that works is:

(s, p, γ, β, t) = (1, 0, 1, 1, 1).

Now suppose n = 6. We make the following observations:

(i) The (1, 1)-entry of P∇ and PAY Z are negative. These imply 3
4
< s < 5

4
. The upper

left (2× 2) block of PAY Z has positive determinant, which implies s < 1.

(ii) The (2, 2)-entry of PA and the (3, 3)-entry of PAY Z are negative. These imply
4
5
< γ < 4

3
.

(iii) The upper left (2×2) block of P∇ has positive determinant, which implies s > 3
4−γ

.

Combined with s < 1, this implies γ < 1.

(iv) The upper left (2× 2) block of PA has positive determinant, which implies

6γ2 − 5γ > s2 − 4s+ 4γs. (32)
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The right side of (32) is increasing when s > 2(1− γ), therefore combined with s > 3
4−γ

we have

6γ2 − 5γ >
9

(4− γ)2
+

12(γ − 1)

4− γ
.

However, this is not possible when 4
5
< γ < 1. □

Theorem 2. LetMn ↪→ Rn+1 be a stable minimal two-sided hypersurfaces with 3 ⩽ n ⩽ 5.
Then Mn is a flat hyperplane.

Proof. It follows from Lemma 8, Theorem 1, and Schoen–Simon–Yau’s result in [20]. □
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