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Preface

This is a self-formatted version of my PhD thesis at Duke University in 2025. I wish
it can be a helpful introductory material for the weak inverse mean curvature flow. Also,
the reader may perhaps find this note easier to read than the official thesis (due to the
more flexibility in formatting in this note).

I would like to thank Gioacchino Antonelli and Mark Haskins for comments on the
previous draft of this note. The reader is welcomed to contact me for any comments or
suggestions (particularly if some part of the text can be made more self-contained).

—————————————————————————————————

How to read it / source of materials. For a summary of the recent developments
of weak IMCF, see Chapter 1 (specifically, from the end of Section 1.2 to Section 1.5).
For the fundamentals of the weak IMCF, see Chapter 2 (particularly from Sections 2.1 to
2.4; they should mostly cover the preliminary sections of [113, 114]).

Chapter 1 and Sections 2.1∼ 2.4 are newly written. Chapter 3 (except Section 3.1)
is basically a copy-paste of [114] with minor edits and non-mathematical improvements.
The other sections come from organizing fractions of the papers [14, 30, 113, 112] with
some additional editing and (sometimes) minor improvements.

Some other useful information can also be found in page 8.
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Chapter 1

Introduction

The inverse mean curvature flow (IMCF) is, in its classical setting, an evolution of
hypersurfaces where the speed of movement is everywhere equal to 1/(mean curvature).
It is formally written as

∂Σt

∂t
=

νt
Ht

, (1.0.1)

where {Σt} is the family of evolving hypersurfaces, νt is the unit normal of Σt, and Ht is
the mean curvature of Σt. The IMCF is a nonlinear parabolic flow as long as Ht > 0.

The analytic study of IMCF started with Gerhardt [43] and Urbas [106] in the 1990s,
where the IMCF was put inside a large class of inverse curvature type flows. The long-
time existence and convergence results in [43, 106] had applications to Minkowski type
inequalities [22, 49]. Another thread of study was initiated by Geroch [44] in the much
earlier 1973, where a relation among IMCF, scalar curvature, and the Riemannian Penrose
inequality, known as the monotonicity of Hawking mass, was discovered. This showed the
potential of the use of IMCF in studying scalar curvature. Later, since the seminal work
of Huisken-Ilmanen [53] which defined the weak flow, and followed by many other works
[12, 19, 20, 21, 29, 55, 70, 93, 101], the weak IMCF has become a central tool in 3-
dimensional scalar curvature geometry. In 2007, the work of Moser [89] connected the
weak IMCF to the p→ 1 behavior of p-harmonic functions, and thus opened a new branch
of research relating the IMCF to nonlinear potential theory [1, 6, 13, 42, 65, 79, 90, 91].

Analytically, there are two main issues obstructing the long-time existence of IMCF
– finite-time singularity and finite-time escape. For the first issue, the hypersurface may
have zero mean curvature somewhere in some finite time, which poses a serious problem
in continuing the flow (since the speed of movement is infinite). The resolution of this
issue is by considering the weak IMCF, as developed by Huisken-Ilmanen [53]. For the
second issue, the evolving hypersurface may become noncompact or diverge to infinity
within finite time, noting that the IMCF is an outward expanding flow. The escaping
phenomenon affects the unique existence of solutions, as parabolic equations alone on non-
compact domains are usually ill-posed. In this thesis, we propose the innermost solution
as a resolution – namely, an innermost solution is the one that expands the slowest among
all possible flows with the same initial data. Our main theorem will show the unique ex-
istence of such an object. As a result, we obtain (to some extent) a full existence theory
to the initial value problem of IMCF.

Along this line, we also address the IMCF in bounded domains. It was previously
unknown what boundary condition leads to the existence of nontrivial solutions. In this
thesis, we propose an “outer obstacle condition” at the boundary, and prove a unique
existence theorem for the corresponding initial value problem. Also, it turns out that the

7



8 CHAPTER 1. INTRODUCTION

IMCF with outer obstacle and the innermost IMCF introduced previously are the same
object.

We also study when a manifold admits “non-escaping” solutions of IMCF, namely,
solutions where all hypersurfaces enclose a bounded region. We prove a criterion that
relates non-escaping with the isoperimetric inequality of the ambient manifold.

Having studied the existence theory, we then provide two applications of IMCF to
scalar curvature. They make use of the Geroch monotonicity formula as well as the
innermost solutions mentioned above.

Organization

The rest of this chapter is a more detailed and technical explanation of the content
of this thesis. It is also intended to be a comprehensive introduction to the weak IMCF,
where I try to incorporate my own perspective and the new developments into this sub-
ject’s framework. The main results of this thesis are marked as Theorems A∼G.

In Chapter 2 we present more preliminary materials, and prove Theorems A, B. In
Chapter 3 we introduce the IMCF with outer obstacle, and prove Theorems D, E. In
Chapter 4 we discuss innermost solutions, and prove Theorem C. In Chapter 5 we discuss
applications to scalar curvature problems, and prove Theorems F, G. Appendix A includes
materials about sets with locally finite perimeters.

Finally, in Appendix B we include a list of standard notations, sign conventions,
frequently used symbols and function spaces, for the reader’s reference.

Source of materials

The majority of this thesis come from my works [112, 113, 114]. In particular: Theo-
rems C, D, and Sections 2.1∼ 2.4, Chapter 3, Sections 4.1∼ 4.2 are extracted from [114].
Theorem A and Section 2.5, A.3, A.4 are extracted from [113]. Theorem E and Sections
5.1, 5.2 are extracted from [112].

Furthermore, Theorem B, E and Sections 2.6, 3.7 are to appear in the joint note [14]
with L. Benatti, L. Mari, M. Rigoli and A. Setti. Theorem F and Sections 4.3, 5.3 are
based on joint work [30] with O. Chodosh and Y. Lai.

1.1 The smooth IMCF

Definitions, first properties. A smooth family of hypersurfaces {Σt} solves the
IMCF if it satisfies the equation

∂Σt

∂t
=

νt
Ht

, (1.1.1)

where νt and Ht denote the unit normal and mean curvature of Σt. In this thesis we
adopt the following sign convention: if Σ is the boundary of a given domain, then its
unit normal always points outward. Also, the unit sphere Sn−1 ⊂ Rn has mean curvature
n− 1. We say that {Σt}0⩽t<T is a solution of IMCF with initial value Σ, if Σ0 = Σ.

As a parabolic evolution equation, the IMCF is guaranteed short-time existence if Σ0

is compact with positive mean curvature [5, Theorem 18.18]. Furthermore, the flow can
always be continued as long as the mean curvature remains positive everywhere [54].

The simplest example of IMCF is the following:
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Example 1.1.1. The family Σt =
{
|x| = e

t
n−1

}
⊂ Rn, t ∈ R, is a solution of the IMCF.

In general, the IMCF in spherical symmetry is explicitly computable:

Example 1.1.2. Consider the warped product metric
(
R×N, h(r)2dr2 + f(r)2gN

)
, with

h(r) > 0 and f(r) strictly increasing in an open interval. Then the hypersurfaces

Σt =
{
r = f−1

(
e

t
n−1f(a)

)}
, (n− 1) log

( inf f

f(a)

)
< t < (n− 1) log

(sup f

f(a)

)
is a solution of the IMCF with Σ0 = {r = a}. Indeed, setting rt = f−1

(
et/(n−1)f(a)

)
, we

may compute
∂Σt

∂t
=

1

n− 1
e

t
n−1f(a)

1

f ′(rt)

∂

∂r
,

and

Ht = (n− 1)
1

h(rt)

f ′(rt)

f(rt)
, νt =

1

h(rt)

∂

∂r
.

Hence ∂Σt/∂t = νt/Ht.

An important property of IMCF is the exponential growth of area:

Lemma 1.1.3. If {Σt} is a family of closed hypersurfaces that solve the IMCF, then

|Σt| = et−s|Σs| ∀ s, t.

Proof. By the first variation of area, we have

d

dt
|Σt| =

∫
Σt

H · 1

H
= |Σt|.

The evolution of mean curvature in an IMCF is computed as [53, (1.3)]:

∂H

∂t
=

∆ΣH

H2
− 2
|∇ΣH|2

H3
− |A|

2

H
− Ric(ν, ν)

H
, (1.1.2)

where ∇Σ,∆Σ are the covariant derivative and Laplacian on Σt. The term −|A|2/H plays
the dominant role in this equation, and as a result, the mean curvature will never blow up
to +∞ along an IMCF. More specifically, if {Σt}t⩾0 is an IMCF, then we have an interior
estimate of the type

sup
Σt∩K

H ⩽ sup
Σ0

H + C(K), ∀ precompact K. (1.1.3)

See Theorem 2.4.3 for a precise version. The mean curvature estimate in turn implies a
lower estimate on the speed of evolution; thus, a long-time existing IMCF will eventually
sweep out the entire manifold. On the other hand, it is a highly nontrivial task to bound
H away from zero. Such control usually requires certain star-shapedness of the evolving
hypersurfaces [31, 43, 51, 54, 106]. In Rn, star-shapedness often comes as an assumption.
In general Riemannian manifolds, usually one does not have lower bounds of H.

Let Σ0 ⊂ Rn be a closed, star-shaped, strictly mean-convex hypersurface (i.e. H > 0).
The classical theorem of Gerhardt [43] and Urbas [106] states that starting from Σ0, the
smooth IMCF exists for all time t ⩾ 0. Furthermore, as t→∞, the rescaled hypersurfaces
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converge to a round sphere. Later, Huisken-Ilmanen [54] improved this result by allowing
Σ0 to be only star-shaped and mean-convex (i.e. H ⩾ 0). Here note that the flow
may have infinite speed somewhere at t = 0. Nevertheless, it is shown [54] (see also
[31, Appendix A]) that star-shapedness has strong enough effect so that the hypersurface
becomes strictly mean-convex for any t > 0. As a result, the IMCF exists in the sense
that the hypersurfaces move smoothly by 1/H for all t > 0 and C0-converge to the initial
condition when t→ 0.

In this thesis, we will mostly not use the parabolic techniques in these works.

Scaling of IMCF. We would like to emphasize the scaling property of IMCF. Here,
for a set X and constant λ, we denote λX = {λx : x ∈ X}.

Fact 1.1.4. If {Σt} solves the IMCF inside Rn, then for any constant λ > 0, the hyper-
surfaces {λΣt} solves the IMCF as well.

Proof. The mean curvature of λΣt is λ−1 times the mean curvature of Σt, while the
evolution speed of {λΣt} is λ times the evolution speed of {Σt}.

Speaking in terms of units, this says that “time is unitless in IMCF” [53, p.362]. As
a consequence, IMCF preserves dilation symmetry. Notice that cones are special objects
as they are invariant under dilations. Hence, the IMCF may flow cones to cones.

Example 1.1.5 (the blossoming cones, [52]). For all n ⩾ 3, the cones

Σt =
{
xn = −|x| cos θt

}
, θt = arcsin

(
et/(n−2)

)
, t ∈ (−∞, 0)

form a solution of IMCF away from the common vertex. This is an ancient solution: Σt

converges to the vertical half-line as t→ −∞, and converges to {xn = 0} as t→ 0.

t→ −∞

t→ 0

Figure 1.1: The blossoming cones

In general, we have:

Example 1.1.6. If {Γt} solves the IMCF in Sn−1, then their cones Ct :=
{
cx : c > 0, x ∈

Γt
}

solve the IMCF in Rn \ {0}.
Indeed, let x ∈ Γt and c > 0, thus cx ∈ Ct. Let HΓ(x) be the mean curvature of Γt at

x. Then we note that: the mean curvature of Ct at cx is c−1HΓ(x), while the flow speed
of Ct at cx is c · (flow speed of Γt at x), which is exactly cHΓ(x)−1.

The existence of cone solutions implies that conical singularities are not immediately
resolved by the IMCF (unlike mean curvature flow). On the other hand, cone solutions
model the asymptotic behavior of solutions at infinity or near a cone point. Along this
line, we briefly mention the following results:
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1. Choi-Daskalopoulos [31] studied the IMCF starting from the boundary of a non-
compact convex smooth domain E0 ⊂ Rn. Let C0 be the asymptotic cone of ∂E0

at infinity, and Γ0 ⊂ Sn−1 be the link of C0. Let us assume for simplicity that Γ0 is
smooth and strictly convex. It is shown in [31] that as we evolve ∂E0 through IMCF,
their asymptotic cones Ct also evolve by IMCF. Hence, the links Γt = Ct ∩ Sn−1

evolve by IMCF as well. By Makowski-Scheuer [78], the IMCF in spheres exists
until the hypersurface becomes an equator. So by the exponential growth of area,
the maximal existence time of {Γt} is equal to

T = log
|Sn−2|
|Γ0|

.

Then by the correspondence of asymptotic cones, it is natural to see that the IMCF
from ∂E0 exists until the same time T (see [31] for a full proof).

2. Choi-Hung [32] studied the IMCF starting from the boundary of a compact convex
set E0 ⊂ Rn with cone singularities (for example, a cube). In this case, the conical
singularity persists for a positive amount of time. Denoting by Γx the link of the
tangent cone of a vertex x, the singularity at x persists for time log

(
|Sn−2|/|Γx|

)
.

The blow-up technique will be employed in Chapter 3, in showing the existence of
solutions for IMCF with outer obstacle.

Obstructions to long-time existence. There are two geometric / analytic issues in
the long-time existence of IMCF.

The first issue is the occurrence of finite-time singularities. As mentioned above, there
is always a good estimate of H from above, but there is no general control of H away
from zero, so issues do occur on the H = 0 side. The following examples are typical and
are helpful to keep in mind.

Example 1.1.7. (i) Let M be a spherically symmetric manifold that expands then closes
then expands again (Figure 1.2, left), and Σ0 be a small geodesic ball centered at the tip.
Then the IMCF exists until reaching the unstable minimal surface ΣT , there H ≡ 0 and
one cannot continue the flow. This example will re-appear several times later.

We generally observe that: once there exists a compact minimal surface S outside Σ0,
it is impossible to have long-time existence of IMCF. Otherwise, Σt would sweep out the
manifold, so there will be a time t where S touches Σt from inside. This contradicts the
maximum principle.

(ii) [53, Example 1.5] Let M = Rn and Σ0 be the disjoint union of two spheres.
Then the IMCF exists until the two components collide. Here we do not view “immersed
solutions” as solutions, so at the colliding time, ΣT becomes a singular hypersurface.

The second issue is finite-time escaping. As the IMCF is an outward expanding flow,
there is a natural concern that Σt may (partially or entirely) diverge to ∞ in finite time.

Example 1.1.8. In Example 1.1.2, we take h(r) ≡ 1 and f(r) = tanh(r). Note that
f(+∞) = 1, so the manifold is asymptotically cylindrical. The smooth IMCF starting
from {r = 1} is

Σt =
{
r = arctanh

(
et/(n−1) tanh(1)

)}
,

which escapes to r = +∞ within −(n− 1) log tanh(1) seconds.
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Σ0

ΣT

Σ0

Σ0

ΣT

H = 0

Figure 1.2: Two examples of finite-time singularities

Recall that the area grows exponentially in an IMCF. If the manifold has a “finite
circumference” at infinity, then heuristically, the IMCF diverges when its area becomes
larger than this circumference.

ΣT−0.1
ΣT−0.01 ΣT−0.001

Figure 1.3: Finite-time escape

The escaping phenomenon affects the unique existence of the solution.

Example 1.1.9. Take M to be an open disk with radius 1, and take Σ0 to be a sphere of
radius 1/2 that is not concentric with M . One obvious solution of IMCF in M is to run
the IMCF in Rn and then restrict to M (Figure 1.4, left). We can also perturb the metric
slightly outside M and run the IMCF, and then restrict to M (Figure 1.4, right). Due
to the instant diffusion of parabolic equations, the two solutions become different once
the hypersurfaces in the second one runs into the perturbed region, though they have the
same initial data.

perturbation
↓

Σ0 Σ0

Figure 1.4: Nonuniqueness of solution when noncompact hypersurfaces appear
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The resolution of the first issue is known: one shall instead consider the weak version
of IMCF, which we will introduce in the next section. A resolution of the second issue
is developed in this thesis: we shall consider the innermost solution, which turns out to
uniquely exist; see Section 1.3.

1.2 The weak IMCF

We now introduce the weak IMCF developed in Huisken-Ilmanen [53]. Throughout
this thesis, we will assume that all domains marked by Ω are connected.

Level set flow. The development in [53] starts with writing the IMCF in the level set
form. This was inspired by similar approaches of Chen-Giga-Goto [28] and Evans-Spruck
[40] on the mean curvature flow. Suppose {Σt} is a solution of IMCF. Then we consider
a function u such that each Σt is a level set of u, namely, Σt = {u = t}.

We need to transform the IMCF equation into an equation in terms of u. This is done
by combining the following:

Fact 1.2.1. The flow speed of {Σt} is equal to 1/|∇u|. (An interesting observation is
that infinite speed of movement corresponds to ∇u = 0 – it is now not so singular !)

Fact 1.2.2. The mean curvature of {Σt} is equal to div
( ∇u
|∇u|

)
.

To see the second fact, note that the unit normal vector of Σt is ∇u
|∇u| , and we have

⟨∇ ∇u
|∇u| ,

∇u
|∇u|⟩ = 0. Combining Facts 1.2.1, 1.2.2, the IMCF equation becomes

div
( ∇u
|∇u|

)
= |∇u|. (1.2.1)

In the sequel, we will call u a smooth solution of IMCF in a domain Ω, if u ∈ C∞(Ω)
and |∇u| is nonzero everywhere, and (1.2.1) holds in Ω.

We will also make use of subsolutions and supersolutions. A family of hypersurfaces
{Σt} is called a subsolution of IMCF if ∂Σt

∂t
⩾ νt

Ht
. Transformed similarly, we will say

that u ∈ C∞(Ω) is a smooth subsolution resp. supersolution of IMCF in Ω, if |∇u| ≠ 0
everywhere, and

div
( ∇u
|∇u|

)
⩾ |∇u| resp. div

( ∇u
|∇u|

)
⩽ |∇u| in Ω. (1.2.2)

Intuitively, if a subsolution and supersolution both run from the same initial hypersurface,
then the subsolution should be relatively outside (this is indeed the case, provided that
the supersolution stays compact).

Transforming Examples 1.1.1, 1.1.2 to level set flows, we have

Example 1.2.3. The function u(x) = (n− 1) log |x| solves (1.2.1) in Rn \ {0}.

Example 1.2.4. In the warped product
(
R×N, h(r)2dr2 + f(r)2gN

)
, the function

u = u(r) = (n− 1) log f(r) + C

solves (1.2.1) for all C ∈ R.
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The transition from smooth IMCF to weak IMCF is done by considering a variational
version of (1.2.1), which we now introduce.

Towards weak solutions: the energy Ju. Throughout the entire thesis, we will
keep the following notation: for a function u and t ∈ R, we define

Et(u) := {u < t}, E+
t (u) := {u ⩽ t}. (1.2.3)

When there is no ambiguity, we will write Et, E
+
t for simplicity. When u is defined on

some domain Ω in the manifold, we view Et, E
+
t as subsets of Ω.

The weak IMCF is based on the following energy: given a function u ∈ Liploc(Ω), a
set E with locally finite perimeter in Ω, and a domain K ⋐ Ω, we define

JKu (E) := P (E;K)−
∫
E∩K
|∇u|. (1.2.4)

Here appear two terminologies in geometric measure theory: sets with locally finite
perimeter, and the notation P (E;K). The notation P (E;K) stands for the perimeter of
E in K. Sets with locally finite perimeters are, vaguely speaking, the roughest sets to
make sense of perimeter in some way. For the definitions and properties of these notions,
see Appendix A. We also recommend the textbook of Maggi [77] for a full introduction.
For readers without much background or that are mainly interested in applications, below
is an intuitive (but imprecise !) dictionary for temporary convenience:

� A set with finite perimeter: a set whose boundary is C1 except for an ignorable
singular set. For the rest of this list, let E be a set with locally finite perimeter.

� P (E;K): viewed as the area of ∂E ∩K.

� P (E): the total perimeter of E, viewed as the area of ∂E.

� ∂∗E: viewed as the smooth part of ∂E. The set ∂E \ ∂∗E contributes zero area.

� νE: viewed as the outer unit normal of ∂E, which exists on ∂∗E.

However, since this thesis is written based on the language of sets with finite perimeter,
we advise the reader to be familiar with the fundamental definitions in Appendix A.

The following cup-cap inequality is useful:

P (E ∪ F ;K) + P (E ∩ F ;K) ⩽ P (E;K) + P (F ;K), (1.2.5)

for all sets E,F with locally finite perimeter in a domain Ω, and for all domains K ⋐ Ω.
See [77, Lemma 12.22].

We return to our main topic. The following observation lies at the heart of the theory
of weak IMCF:

Fact 1.2.5. Let u ∈ C∞(Ω) be a smooth solution of IMCF in Ω. Then for each t ∈ R,
the set Et = {u < t} locally minimizes Ju in Ω in the following sense: for each set F with
locally finite perimeter and each domain K, satisfying Et∆F ⋐ K ⋐ Ω, we have

JKu (Et) ⩽ JKu (F ). (1.2.6)

See Figure 1.5 for a depiction of the positions of Et, F,K. When speaking of “locally
minimizing”, we mean that an object minimizes some functional among all compact per-
turbations. The use of the precompact set K is to ensure that the energy is finite. We
will usually call F a competitor set.



1.2. THE WEAK IMCF 15

∂Et ∂F

Ω K

Figure 1.5: Local energy comparison

Remark 1.2.6. To verify local minimizing, we have the flexibility to choose K: for each
competitor F , verifying (1.2.6) for one K implies (1.2.6) for all other K. Indeed, since
we have Et = F outside K, switching to another K does not change the difference of the
two sides in (1.2.6). We can always choose K at our convenience due to this reason.

Proof of Fact 1.2.5.
Let us denote by νG the outer unit normal of any set G. Note that νEt = ∇u

|∇u| since

Et is a sub-level set of u. Also, we trivially have νF · ∇u
|∇u| ⩽ 1. Thus we directly calculate

JKu (F )− JKu (Et) = P (F ;K)− P (Et;K) +

∫
(χEt − χF )|∇u|

⩾
∫
∂∗F∩K

νF ·
∇u
|∇u|

−
∫
∂∗Et∩K

νEt ·
∇u
|∇u|

+

∫
(χEt − χF )|∇u|.

Through a re-combination of areas (using [77, Theorem 16.3] for rigorousness), we have∫
∂∗F∩K

νF ·
∇u
|∇u|

−
∫
∂∗Et∩K

νEt ·
∇u
|∇u|

=

∫
∂∗(F\Et)

νF\Et ·
∇u
|∇u|

−
∫
∂∗(Et\F )

νEt\F ·
∇u
|∇u|

.

Then by the divergence formula, we have

JKu (F )− JKu (Et) ⩾
∫
F\Et

div
( ∇u
|∇u|

)
−
∫
Et\F

div
( ∇u
|∇u|

)
+

∫
(χEt − χF )|∇u| = 0,

making use of (1.2.1).

This proof is known as a “calibration type proof”. It is helpful to connect to the
following classical fact: if a smooth vector field ν satisfies |ν| ⩽ 1 and div(ν) = 0, and a
closed hypersurface Σ satisfies νΣ ·ν = 1, then Σ is area-minimizing in its homology class.

The weak IMCF. The definition of a weak IMCF is by making Fact 1.2.5 the defi-
nition. We say that a function u is a weak solution of IMCF in Ω, if

u ∈ Liploc(Ω), and each Et locally minimizes Ju in Ω as in Fact 1.2.5. (1.2.7)
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We reserve the notation IMCF(((Ω))) for weak solutions: a function u is a solution of IMCF(((Ω)))
if it satisfies (1.2.7).

We also define that u is a subsolution (resp. supersolution) of IMCF(((Ω))), if each Et
locally minimizes Ju in Ω from outside (resp. from inside). Namely, we ask F ⊃ E (resp.
F ⊂ E) in energy comparisons. Similar to Fact 1.2.5, one can show that smooth sub- or
super-solutions of IMCF (see (1.2.2)) are always weak sub- or super-solutions.

A few remarks regarding the definition (1.2.7) are in order.

Remark 1.2.7. Liploc(Ω) denotes the space of locally Lipschitz functions in Ω. By
Rademacher’s theorem, locally Lipschitz functions are almost everywhere differentiable,
with L∞

loc derivatives. Hence, the energy (1.2.4) is well-defined for u ∈ Liploc(Ω).

Remark 1.2.8. It is much more commonly known that weak IMCF can be formulated
using the energy

JKu (v) =

∫
K

|∇v|+ v|∇u|. (1.2.8)

Namely, it is commonly defined that u is a weak IMCF if JKu (u) ⩽ JKu (v) for all v ∈
Liploc(Ω) with {u ̸= v} ⋐ K ⋐ Ω. This is equivalent to our definition made above [53,
Lemma 1.1]. In this thesis, we choose to develop the weak IMCF from (1.2.7), as it plays
a major role in most of our results.

A less well-known (but equally important) formulation is the following calibration
formulation. This first appeared in [53, Section 3]. We say that u is a calibrated weak
IMCF if there is a measurable vector field ν, such that

|ν| ⩽ 1, ν · ∇u = |∇u|, div(ν) = |∇u|. (1.2.9)

This formulation is equivalent to (1.2.7): every calibrated solution is a weak IMCF and
every weak IMCF is calibrated. The idea of (1.2.9) is to replace the vector field ∇u/|∇u|
in (1.2.1) by the abstract calibration vector field ν, as the former may not make sense
when ∇u = 0. As evidence of how this works, one may recall the calibration proof of Fact
1.2.5, and then check that the proof still makes sense if we replace each ∇u/|∇u| by ν
and make use of (1.2.9). We refer to Section 2.3 for more details about (1.2.9).

We remark that formulations similar to (1.2.9) also appear in many works related to
the 1-Laplacian; we refer to for example [46, 61, 67, 81, 88] and references therein.

Geometric behavior of weak IMCF. The following is a direct but important
consequence of the definition.

Fact 1.2.9. Suppose u is a solution of IMCF(((Ω))). Then each Et is locally outward
perimeter-minimizing in Ω.

Here, a set E is said to be locally outward (resp. inward) perimeter-minimizing in
Ω, if for any competitor set F ⊃ E (resp. F ⊂ E) and any domain K, satisfying
E∆F ⋐ K ⋐ Ω, it holds

P (F ;K) ⩾ P (E;K).

For simplicity, we will often just call E locally outward minimizing in Ω.
When E ⋐ Ω, we will simply call E outward minimizing. In this case, the minimizing

condition is much simpler: for all F with E ⊂ F ⋐ Ω, one has P (E) ⩽ P (F ). Here,
P (E) = P (E;M) stands for the total perimeter of E.
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Proof of Fact 1.2.9. Let F and K be as stated above. By the definition of weak IMCF,
we have

JKu (F ) ⩾ JKu (Et),

which implies

P (F ;K) ⩾ P (E;K) +

∫
F\E
|∇u| ⩾ P (E;K).

At this point, the weak and smooth IMCF start to behave differently. Indeed, recall
Example 1.1.7(i), or see Figure 1.6 below, where the smooth IMCF exists until the equator
ΣT . Observe that the region enclosed by ΣT is not outward minimizing: the surface S
is a competitor. Thus, ΣT cannot be a sub-level set of a weak IMCF. Similarly, all the
surfaces Σs, T

′ < s ⩽ T (where ΣT ′ is as in the figure), should not appear in a weak
IMCF.

Σ0

ΣT ′

Σs ΣT

S

Figure 1.6: A smooth IMCF that terminates in finite time

We continue our investigation by considering the set E+
t = {u ⩽ t}. We have the

following fact:

Fact 1.2.10. If u solves IMCF(((Ω))), then each E+
t is also a local minimizer of Ju.

Proof. Note that the definition does not apply directly to E+
t . However, since E+

t is a
descending limit of ET+ε, we hope to take the minimizing property of the latter and let
ε → 0. This proof uses what is known as the set-replacing argument, which is common
in geometric measure theory. We give an outline here, and leave the analytic details in
Lemma A.2.5.

Let E be an energy competitor, with E∆E+
t ⋐ K ⋐ Ω. Choose another domain K ′

such that E∆E+
t ⋐ K ′ ⋐ K. For each s > t, consider the set Ẽ = (E ∩K ′) ∪ (Es \K ′).

See the left side of Figure 1.7, this choice makes sure that Ẽ∆Es ⋐ K.

So we may compare JKu (Es) ⩽ JKu (Ẽ). This implies (see the right side of Figure 1.7)

A+D −
∫
Es∩K′

|∇u| ⩽ A+B + C −
∫
E∩K′

|∇u|.

The common terms A are cancelled. Note that B lies in the region between ∂E+
t and

∂Es, which should be small as s↘ t if we choose K ′ to be sort of transversal with ∂E+
t .

As a result,

D ⩽ o(1) + C +

∫
Es∩K′

|∇u| −
∫
E∩K′

|∇u|.
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Now we take s↘ t. The lower semi-continuity of perimeter implies

P (E+
t ;K ′) ⩽ lim inf

s→t
P (Es;K

′) = lim inf
s→t

D

⩽ lim inf
s→t

(
o(1) + C +

∫
Es∩K′

|∇u| −
∫
E∩K′

|∇u|
)

= P (E;K ′) +

∫
E+
t ∩K′

|∇u| −
∫
E∩K′

|∇u|.

This proves JK
′

u (E+
t ) ⩽ JK

′
u (E), hence JKu (E+

t ) ⩽ JKu (E) (recall Remark 1.2.6).

K ′
K

∂E+
t

∂Es

∂E

Ẽ

→A

→B

→C

→D

→

B

→A

Ẽ

K ′

Figure 1.7: The set-replacing technique

Fact 1.2.11. Suppose u is a solution of IMCF(((Ω))). Then each E+
t is strictly outward

minimizing in Ω.

Here, a set E is strictly outward (perimeter-)minimizing in Ω, if for any competitor
set F ⊃ E and domain K satisfying F \ E ⋐ K ⋐ Ω and |F \ E| > 0, it holds

P (F ;K) > P (E;K).

Proof of Fact 1.2.11. Let F,K be as stated above. By Fact 1.2.10, we have

P (F ;K) ⩾ P (E+
t ;K) +

∫
F\E+

t

|∇u|.

Denote G = F \ E+
t . Note that G has nonzero measure by our assumption. So if

P (F ;K) = P (E+
t ;K) then ∇u ≡ 0 in G. So u is constant in every connected component

of G. Since u > t outside E+
t and u = t on ∂E+

t , it follows that G ⋐ Ω \ E+
t . Hence

P (F ;K) = P (E+
t ;K) + P (G). Hence P (G) = 0, thus G must be a union of connected

components of Ω \ E+
t that do not touch ∂E+

t . But this violates our initial assumption
that Ω is connected.

Finally, the sets Et, E
+
t are related through the notion of minimizing hull. Given two

sets E ⊂ E ′ ⊂ Ω. We say that E ′ is the strictly outward minimizing hull (or “minimizing
hull”, for brevity) of E in Ω, if:

(i) E ′ is strictly outward minimizing in Ω,

(ii) for any another strictly outward minimizing set E ′′ in Ω, with E ⊂ E ′′, we have
E ′ ⊂ E ′′ up to a set with measure zero (i.e. |E ′ \ E ′′| = 0).
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One can show (see Lemma A.4.2) that if E1, E2 are both strictly outward minimizing,
then so is E1 ∩ E2. Thus the minimizing hull, if exists, is unique up to measure zero.

For many occasions in this thesis, we will be dealing with case E,E ′ ⋐ Ω. In this case,
there is a convenient characterization of the minimizing hull. Given a set E ⋐ Ω, we say
that another set G ⋐ Ω is a least area solution outside E in Ω, if G ⊃ E, and

P (G) = inf
{
P (F ) : E ⊂ F ⋐ Ω

}
.

We have:

Lemma 1.2.12 (identical with Theorem A.4.5). Fix an ambient domain Ω. Under the
assumption E ⊂ E ′ ⋐ Ω, E ′ is the minimizing hull of E if and only if E ′ is the least area
solution outside E with the largest volume.

Here, it can be shown that the union of two least area solutions is again a least area
solution, so the largest one is unique up to measure zero. A direct consequence of this
lemma is that, if E has a precompact minimizing hull E ′, then ∂E ′\∂E is a stable minimal
hypersurface.

Example 1.2.13. Consider the surface in Figure 1.8: there are three stable minimal
surfaces Σ1,Σ2,Σ3 with the same area. Let E be the geodesic ball such that |∂E| = |Σi|.
Let E ′ be the region enclosed by Σ3. Then E ′ is the minimizing hull of E. Indeed, first
note that E ′ is strictly outward perimeter-minimizing, but the regions enclosed by Σ1,Σ2

are not. Also, note that Σi are all least area solutions outside E, while Σ3 is the one
enclosing the largest volume.

∂E ∂E ′

Σ1 Σ2 Σ3

Figure 1.8: Strictly outward minimizing hull

Further note that: if one considers a surface where stable minimal surfaces repeat
periodically forever, then E does not have precompact minimizing hulls.

The following lemma characterizes the relation between Et and E+
t :

Fact 1.2.14. Suppose u is a solution of IMCF(((Ω))). Then each E+
t is the minimizing hull

of Et, provided that E+
t \ Et ⋐ Ω.

Proof. By Fact 1.2.11, E+
t is strictly outward minimizing. It suffices to show that it is the

smallest one. Choose a domain K with E+
t \ Et ⋐ K ⋐ Ω. Suppose E ′ ⊃ Et is another

strictly outward minimizing set in Ω. We need to show that |E+
t \ E ′| = 0.

Note that E+
t ∩ E ′ is also strictly outward minimizing (Lemma A.4.2). On the other

hand, we can compare
JKu (E+

t ) ⩽ JKu (E+
t ∩ E ′).

Since ∇u = 0 in E+
t \ E ′, this implies

P (E+
t ;K) ⩽ P (E+

t ∩ E ′;K).

By the strict minimization of E+
t ∩ E ′, this forces |E+

t \ E ′| = 0.
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Now we are ready to state the heuristic behavior of the weak IMCF. It is roughly a
combination of two behaviors:

(i) outward movement by 1/H,

(ii) instant jump to the minimizing hull.

And due to Fact 1.2.14, option (ii) takes priority whenever possible. This description is
suitable at least as long as Et remains precompact. When Et becomes noncompact, due
to the possible failure of Fact 1.2.14, the behavior can be more complicated.

Example 1.2.15. Figure 1.9 describes the weak IMCF in the situation of Example
1.1.7(i). The hypersurfaces ∂Et first evolve smoothly by 1/H until time s, then jump,
then continue evolving smoothly by 1/H.

∂E0

∂Es ∂E+
s

u ≡ s −→
1/H – flow

→

1/H – flow

Figure 1.9: An example of weak IMCF

Example 1.2.16. For a general warped product metric
(
R × N, dr2 + f(r)2gN

)
, where

f > 0 is not necessarily increasing, the following function is a weak solution:

u = u(r) = (n− 1) inf
s⩾r

log f(s).

Indeed, one may check that this solution is calibrated by the vector field

ν = ν(r) =
( infs⩾r f(s)

f(r)

)n−1 ∂

∂r
.

Let us mention the following compactness point of view as another explanation of
jumping. It is a general principle that weak objects should satisfy a certain compactness
property. A limit of weak IMCFs should be again a weak IMCF. In particular, a limit
of smooth IMCFs should be a weak IMCF. Now consider a family of radially symmetric

ΣT+0ΣTΣT+εΣT

→jump

Figure 1.10: convergence to a weak IMCF

surfaces dr2 +fi(r)
2dθ2, where each fi is strictly increasing, but the limit f = limi→∞ fi is

only increasing, with f |1⩽r⩽2 being constant. See Figure 1.10 for illustration. Due to the
exponential growth of area, the time that it takes to move from r = 1 to r = 2 converges



1.2. THE WEAK IMCF 21

to zero as i → ∞. In the limit, it takes zero time to move from r = 1 to r = 2, thus a
jump is formed.

Further properties of the weak IMCF. Let us include some more useful facts
here. We first discuss the regularity of level sets. The minimization of energy implies the
following: for any competitor set F and domain K with Et∆F ⋐ K ⋐ Ω, one has

P (Et;K) ⩽ P (F ;K) + sup
K
|∇u| · |Et∆F |.

Thus, each Et falls into the class of “almost perimeter-minimizers” defined in Section A.2.
In particular, the deep regularity results in geometric measure theory show that:

Fact 1.2.17. Each ∂Et is a C1,α hypersurface except for a codimension 8 singular set.

We have previously discussed outward minimizing properties. Then it is natural to
ask about inward minimizing. This is stated as follows:

Lemma 1.2.18 (excess inequality). Let u solve IMCF(((Ω))), and F ⋐ K ⋐ Ω. Then for all
t we have

P (Et;K) ⩽ P (Et \ F ;K) +
(
et−infF (u) − 1

)
P (F ;Et). (1.2.10)

Proof. We present a technically simplified proof (see Lemma 2.2.1 for the full proof). See
Figure 1.11: for each τ ⩽ t, we denote

A(τ) = P (Eτ ;F ), S(τ) = P (F ;Eτ ).

Comparing JKu (Eτ ) ⩽ JKu (Eτ \ F ), and cancelling the common portions, we have

∂Et
∂F

∂Eτ

S(τ)

A(τ)

Figure 1.11: Proof of the excess inequality

A(τ) ⩽ S(τ) +

∫
Eτ∩F

|∇u| = S(τ) +

∫ τ

infF (u)

A(s) ds (by coarea formula).

Then by Gronwall’s inequality, this implies

A(t) ⩽ S(t) +

∫ t

infF (u)

et−sS(s) ds.

Since S(s) ⩽ P (F ;Et) for all s ⩽ t, we now have A(t) ⩽ et−infF (u)S(t). This is (up to
some technicalities) the same as (1.2.10), by canceling the common portions in P (Et;K)
and P (Et \ F ;K).
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As a consequence, if u is close to a constant, then Et is close to being inward mini-
mizing: by (1.2.10) we have

P (Et;K) ⩽ P (Et \ F ;K) +
(
eoscK(u) − 1

)
P (F ), ∀F ⋐ K.

In addition with the outer minimizing property, this actually implies that Et is close to
being perimeter-minimizing. We would later encounter a sequence of weak IMCFs that
converges to a constant. Thus Lemma 1.2.18, together with the set-replacing argument,
implies that a selected sequence of level sets will converge to an area-minimizing hyper-
surface.

The initial value problem. Next, we turn to the initial value problem of the weak
IMCF. We will denote by E0 the initial data (whose boundary is the surface that we start
the flow from); it will always be a C1,1 domain.

We say that a function u solves IVP(((Ω;E0))), i.e. the initial value problem in Ω starting
with E0, if the following holds:

(i) u ∈ Liploc(Ω) and E0 = {u < 0},
(ii) u|Ω\E0

solves IMCF(((Ω \ E0))).

A few remarks are in order. First, E0 = {u < 0} implies u|∂E0 = 0, which is consistent
with the fact that ∂E0 is the initial hypersurface. The C1,1 regularity of E0 guarantees
that the solution is Lipschitz near ∂E0. For those E0 with worse regularity, the “solution”
may fail to be continuous near ∂E0 (see Example 1.1.6 and Choi-Hung [32]).

Next, note that item (ii) only states that u is a weak IMCF in Ω \ E0, while it can
have arbitrary values in E0 (as long as u|E0 < 0 and u is Lipschitz across ∂E0). We will
view two solutions u1, u2 as the same solution if u1 = u2 outside E0. Let us remind the
reader again that a solution of IVP(((Ω;E0))) is not a solution of IMCF(((Ω))).

Proper solutions. A solution of IVP(((Ω;E0))) is called proper, if Et ⋐ Ω for all
t ⩾ 0. Note that proper solutions exist only for E0 ⋐ Ω. Recall the two issues of IMCF
discussed in the previous section: proper solutions are exactly the ones where escaping
do not happen. Proper solutions share many desirable properties, let us list a few:

Lemma 1.2.19 (jump at t = 0, Lemma 2.1.10).
Suppose u is a proper solution of IVP(((Ω;E0))). Then E

+
0 is the minimizing hull of E0.

Lemma 1.2.20 (exponential growth, Lemma 2.1.10).
Suppose u is a proper solution of IVP(((Ω;E0))). Then P (Et) = etP (E+

0 ) ⩽ etP (E0).
Equality holds if E0 is outward minimizing in Ω.

Lemma 1.2.21 (uniqueness, Lemma 2.1.12).
For a fixed E0, there exists at most one proper solution of IVP(((Ω;E0))).

One fundamental question is to find effective criteria for the existence of proper so-
lutions. The original work of Huisken-Ilmanen [53] proved the following: if there exists
a single proper subsolution with a precompact initial value, then for all E0 ⋐ M , there
exists a unique proper solution of IVP(((M ;E0))). Recall that in a subsolution of IMCF, the
hypersurfaces move faster than 1/H. In the weak setting, a subsolution of IMCF should
intuitively move faster than 1/H, and also jump further than minimizing hulls.

Example 1.2.22. See Figure 1.12 below, which is the same as in Example 1.2.15 except
that the jump at time s is made further ahead. The function u described here is a weak
subsolution. To prove this, one combines Lemma 2.2.4 and Remark 2.1.4(iv).
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∂E0

∂Es
∂E+

s

u ≡ s −→
1/H – flow

Figure 1.12: A proper weak subsolution

Analytically, the proper subsolution plays the role of a lower barrier. With this subso-
lution available, [53] uses the method of elliptic regularization to obtain a proper solution
(see also Section 2.4). This existence theorem in [53] is applicable to manifolds with pre-
cise description at infinity, including asymptotically flat or hyperbolic manifolds. In an
asymptotically flat manifold, for example, the function (n− 1− ε) log |x| is a subsolution
sufficiently faraway in the exterior coordinate chart, for all ε > 0.

We wish to investigate the relation between properness and the geometry of the un-
derlying manifold. In this respect, the existence of a proper subsolution remains a quite
unintuitive condition (since there has not been general ways of construction). Our first
main theorem is a properness criterion stated in terms of the isoperimetric inequality on
the ambient manifold.

Define the isoperimetric profile function

ip(v) = inf
{
P (E) : E ⋐M, |E| = v

}
, (1.2.11)

where recall that P (E) = P (E;M) is the total perimeter of E.

Theorem A. Suppose M is complete, connected, noncompact, and the isoperimetric pro-
file satisfies

lim inf
v→∞

ip(v) =∞ (1.2.12)

and ∫ v0

0

dv

ip(v)
<∞ for some v0 > 0. (1.2.13)

Then for any C1,1 domain E0 ⋐M , there exists a unique proper solution of IVP(((M ;E0))).

Let us remark on the conditions involved here. First, we note that (1.2.12) roughly
says that the manifold is more expanding than a cylinder:

Remark 1.2.23. If (1.2.12) holds, then M has superlinear volume growth.
Indeed, if |B(x0, r)| ⩽ Cr for some constant C and for all r > 1, then by the coarea

formula, we can find a sequence of radii ri ∈ [2i−1, 2i] such that P
(
B(x0, ri)

)
⩽ 2C. This

directly implies lim infv→∞ ip(v) ⩽ 2C.

In particular, (1.2.12) rules out examples like 1.1.8. The second condition (1.2.13) is
less transparent at first glance. However, we note the following:

Remark 1.2.24. If (1.2.13) holds, then infx∈M |B(x, 1)| > 0.
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Indeed, fixing x ∈ M , we consider the function V (r) = |B(x, r)|. For almost every
r > 0 we have

dV

dr
= P

(
B(x, r)

)
⩾ ip(V (r)).

Since V (r) > 0 for all r > 0, and (1.2.13) holds, we can integrate this in [0, 1] to get∫ V (1)

0

dv

ip(v)
⩾ 1.

Thus V (1) has a lower bound depending on the isoperimetric profile, but not on x.

In particular, (1.2.13) rules out the appearance of ends with finite volume, which is
another obstruction to properness and is not detected by (1.2.12). Here notice that if M
has multiple ends, and one of the end is asymptotically cylindrical or has finite volume,
then M does not admit proper IMCFs.

Let us mention several situations where the conditions (1.2.12) (1.2.13) are meet:

Remark 1.2.25.

1. For a manifold with Ric ⩾ −λg and infx∈M |B(x, 1)| > 0, one can prove that

lim inf
v→0

ip(v)v−(n−1)/n > 0,

in particular, (1.2.13) holds. See [35] and [8, Theorem 1.3].

2. For the case of nonnegative sectional curvature and uniform lower bound on |B(x, 1)|,
it is shown in [7, 9] that (1.2.12) is equivalent to superlinear volume growth.

3. A particular case of (1.2.12) (1.2.13) is when M satisfies an Euclidean isoperimetric
inequality

ip(v) ⩾ cv(n−1)/n (∀ v > 0). (1.2.14)

In [79], the existence of proper IMCF is studied under (1.2.14) and Ricci lower
bounds, using p-harmonic approximations. Our theorem extends [79, Theorem 1.7].

In addition to properness, it is natural to ask further about the growth rate of a
solution at infinity. When an Euclidean isoperimetric inequality (1.2.14) is present, it is
conjectured that the proper solution should grow at the order of (n−1) log r. This growth
rate comes from the model example u = (n− 1) log |x| in Rn, and is consistent with past
results in [53, 79, 89]. Here we confirm this estimate in full generality:

Theorem B. Suppose that M satisfies the Euclidean isoperimetric inequality

P (E) ⩾ cI |E|
n−1
n ∀E ⋐M, (1.2.15)

for some cI > 0, then for any C1,1 initial data E0 ⋐ M , the unique proper solution u of
IVP(((M ;E0))) satisfies

u(x) ⩾ (n− 1) log d(x, x0)− C in M \ E0, (1.2.16)

for some constant C.

In particular, this generalizes [6, Theorem 3.6] and the main result of [79]. Theorem
B will appear in the joint note [14]. Both Theorems A, B are proved in Sections 2.5 and
2.6. We refer the reader there for ideas of proof and more details.
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1.3 Innermost solutions

After the discussion on proper solutions, we shall move forward and consider the
more general case. Namely, we seek a general existence theory including the case where
no proper solution is expected. We keep in mind that an ideal existence theory should
provide a unique solution. Let us collect some examples to keep in mind:

(i) Example 1.1.8, the asymptotically cylindrical model case. And in general, manifolds
with one or multiple cylindrical ends.

(ii) Example 1.1.9, where M is an open disk, and E0 is a sub-disk with a different
center from that of M (so M is incomplete).

We start with the following interesting and crucial observation:

Fact 1.3.1. If u is a solution of IVP(((Ω;E0))), then so is min{u, T} for all T ⩾ 0.

See Remark 2.1.4(iv) for the proof; the reader may also try to prove this independently.
This means that we can force the hypersurface to escape to infinity at any given time T .
This seems strange at first glance, as forced jumping seems to produce a strict subsolution.
The point here is that in a weak IMCF we only make local energy comparison, so jumps
over noncompact sets are not obviously detected.

This fact suggests that decreasing the solutions leads to more non-uniqueness. We
may further investigate a concrete example:

Remark 1.3.2. Recall Example 1.2.16 where we considered a warped product dr2 +
f(r)2gSn−1 . For simplicity, here let us assume f ′ > 0 everywhere. Consider E0 = {r < 1}.
Then we can show that all radial solutions of IVP(((M ;E0))) take the form

u(r) = min
{

(n− 1) log
[
f(r)/f(1)

]
, T
}

for some T ⩾ 0. (1.3.1)

Namely, all of them are truncations of (n− 1) log
[
f(r)/f(1)

]
.

Indeed, whenever Et ⋐ M , we have P (Et) = etP (E0) by exponential growth. The
outward minimization implies that each Et must take the form {r < r(t)} for some
r(t) ⩾ 1. Combining these two facts, we obtain f(r(t)) = et/(n−1)f(r(0)) = et/(n−1)f(1)
for all t ⩾ 0 such that Et ⋐M . Since f is strictly increasing, this directly implies (1.3.1).

Thus, we are motivated to consider maximal solutions of IMCF. We say that u is a
maximal solution of IVP(((Ω;E0))), if u|Ω\E0 ⩾ v|Ω\E0 for any other solution v of IVP(((Ω;E0))).
For intuitiveness, we may also call u an innermost solution (since a function being maximal
means that its sub-level sets are innermost). We will often switch between these two
terminologies, depending on our context.

The following is our main existence theorem:

Theorem C. Let M be a (possibly incomplete) manifold, and E0 ⊂ M be a (possibly
unbounded) C1,1 domain. Then there exists a unique maximal solution of IVP(((M ;E0))).

The reason that such solutions exist will be made more clear in the next section
(they turn out to be a limit of IMCFs with outer obstacle). An indirect evidence is
that the maximum of two solutions is a subsolution (Lemma 2.3.6). However, the major
difficulty along this line is still to obtain a solution that lies above a given subsolution
(the reader may compare with Huisken-Ilmanen’s existence theorem, which essentially
used the properness of the subsolution).
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Let us briefly describe the geometric behavior of innermost solutions. For example (i)
above, we saw in Remark 1.3.2 that the innermost IMCF agrees with the smooth one.
Case (ii) is a bit harder to imagine. It turns out that the level sets will be tangent to
∂M upon contact. See Figure 1.13: solid lines represent the level sets in the innermost
flow, while dashed lines represent the standard IMCF in R2 restricted to the disk, for
comparison. The mean curvature diverges to infinity near ∂M (so the speed of movement
becomes 0). On the other hand, it can be shown that the hypersurfaces remain C1,α up
to ∂M . Such solutions will be our focus in the next section.

E0

∂M

Figure 1.13: the innermost IMCF in a disk

Innermost IMCFs may generally be classified into several types, according to how the
level sets diverge to infinity. Suppose E0 ⋐ M ; we say that the innermost solution u of
IVP(((M ;E0))) is:

(i) proper, if Et ⋐M for all t > 0;

(ii) sweeping, if there is T ∈ (0,∞) so that Et ⋐M for all t < T , and ET = M .

(iii) instantly escaping, if there is T ∈ (0,∞) so that ET ⋐M , and u ≡ T in M \ ET .

(iv) partially diverging, if there is T ∈ (0,∞) so that ET ̸= M but ET ̸⋐M .

(v) trivial, if u ≡ 0.

We include some examples of flows of these types. In Figures 1.14∼ 1.17 below, dark
grey regions represent the initial value E0, and light grey regions represent jumps in the
weak flow:

E0 E0

Figure 1.14: the cases of sweeping flow

Among non-proper flows, the types of sweeping and instantly escaping flows are rela-
tively “good”, since the level sets stay compact before they disappear. As shown in the
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E0 E0

Figure 1.15: the cases of instantly escaping flow

E0 E0

Figure 1.16: the cases of partially diverging flow

E0

Figure 1.17: the case of trivial flow

following lemma, the bounded geometry condition rules out bad solution types. Further-
more, the disappearing time is exactly linked to the circumference of M at infinity.

Lemma 1.3.3 (identical with Theorem 4.3.2). Suppose M is complete, one-ended, and
has bounded geometry:

|Rm | ⩽ Λ2, inj ⩾ Λ−1.

Then there is a constant A = A(Λ) > 0 such that: for any C1,1 domain E0 ⋐ M with
P (E0) ⩽ A, the innermost solution of IVP(((M ;E0))) is either proper, sweeping, or instantly
escaping. Let T be the disappearing time for the sweeping or escaping cases, and T = +∞
for the proper case. Then we have

eTP (E+
0 ) = inf

{
lim inf
i→∞

P (Ki) : K1 ⋐ K2 ⋐ · · · ⋐M

are smooth domains with
⋃

Ki = M
}
.

1.4 IMCF with outer obstacle

In this section, we introduce a theory of weak IMCF inside bounded domains, which
we call the IMCF with outer obstacle. There are several aspects for one to understand
this object, which together would provide a comprehensive picture.

Aspect 1: as IMCF with a boundary tangency condition. Let Ω be a smooth domain.
We say that u ∈ C∞(Ω) is a smooth IMCF with outer obstacle condition at ∂Ω, if it satisfies

div
( ∇u
|∇u|

)
= |∇u| in Ω, (1.4.1)
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and

lim
x→∂Ω

∇u(x)

|∇u(x)|
= νΩ locally uniformly, (1.4.2)

where νΩ is the outer unit normal of Ω. In terms of hypersurfaces, this is saying that the
family {Σt} evolves by 1/H in the interior of Ω, while each Σt stays tangent to ∂Ω.

Recall our convention that if u is defined in a domain Ω, then Et is viewed as a subset
of Ω. Thus, its boundary contains not only ∂Et ∩ Ω but also ∂Et ∩ ∂Ω. (Hence, a lot of
level sets stay stationary and stack up at ∂Ω.) Let us include some examples:

Example 1.4.1. Let Ω = B(0, 1) \ {0} ⊂ Rn \ {0} = M . Note that 0 /∈ ∂Ω, so Ω is a
smooth domain. Then the function

u(x) = (n− 1) log |x|

satisfies (1.4.1) and (1.4.2). Note that Et = Ω for all t ⩾ 0.

Example 1.4.2. Figure 1.13 depicts an IMCF with outer obstacle ∂M .

Example 1.4.3 (cycloid). It is observed by Drugan-Lee-Wheeler [37] that cycloids are
(the only) translating solitons of the IMCF in R2. With suitable positioning, let us
view the cycloid γ as sliding in a strip region Ω ⊂ R2, see Figure 1.18. There are two
singularities at its endpoints, where γ is asymptotic to the graph y = ±Cx3/2. Thus, the
boundary tangency condition is satisfied. The sub-level sets of the corresponding arrival
time function have C1,1/2 boundaries (see γt in Figure 1.18: they are translations of γ
plus two horizontal rays).

Ω
γt

→
→

→

Figure 1.18: translating cycloids.

Example 1.4.4 (nephroid). Let γ be a half of the nephroid, positioned in a half-plane
Ω = {y > 0} ⊂ R2. Then the arrival time function u associated to the family of curves

γt = e3t/4γ, t ∈ R,

is a solution of IMCF satisfying the boundary tangency condition. Each sub-level Et
again has C1,1/2 regularity. Note that limx→0 u(x) = −∞ and limx→∞ u(x) = +∞.

→

→→

Figure 1.19: Expanding nephroids.
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The nephroid soliton will appear in Chapter 3 to show the sharpness of several theo-
rems. We shall see one instance (Theorem 1.4.13) soon in this section.

Furthermore, all the epicycloids and hypocycloids are homothetic solitons of the IMCF
in suitable conic domains; see Section 3.1 for the precise computations.

Aspect 2: as the solution of an outer obstacle problem. We define that u is a weak
solution of IMCF in Ω respecting the outer obstacle ∂Ω, if

(i) u ∈ Liploc(Ω),

(ii) for each t ∈ R, any competitor set E ⊂ Ω, and any domain K satisfying E∆Et ⋐
K ⋐M , we have J̃Ku (Et) ⩽ J̃Ku (E), where

J̃Ku (E) := P (E;K)−
∫
E∩K
|∇u|. (1.4.3)

The energy J̃u has a very similar form to Ju, the difference being that we do not require
K ⋐ Ω. Note that each Et is a minimizer of an outer obstacle type problem (with outer
obstacle ∂Ω), since Et and its competitor E are both subsets of Ω. See Figure 1.20 for
a comparison between interior energy comparison and energy comparison involving outer
obstacles (the grey regions represent Et∆F ).

∂F
∂Et

K

Ω

∂F

∂Et

K

Ω

Figure 1.20: energy comparison for interior and obstacle cases

We will reserve the notation IMCF(((Ω)))+OBS(((∂Ω))) to denote weak IMCFs in Ω that
respect the outer obstacle ∂Ω. Subsolutions and supersolutions of IMCF(((Ω)))+OBS(((∂Ω)))
can similarly be defined by requiring E ⊂ F ⊂ Ω or F ⊂ E for all competitors F .

What we have made implicit in this notation is the dependence on the ambient mani-
fold: when talking about solutions of IMCF(((Ω)))+OBS(((∂Ω))), the domain Ω always sits inside
a manifold M , and ∂Ω is a subset of the ambient manifold.

The outer minimizing property of level sets is similar to the interior case, except
that all the comparisons are subject to the outer obstacle ∂Ω. We say that a set E is
locally outward (perimeter-) minimizing in Ω, if for any set F and domain K satisfying
E ⊂ F ⊂ Ω and F \ E ⋐ K ⋐M , we have

P (E;K) ⩽ P (F ;K). (1.4.4)

Strict outward minimizing sets, and thus minimizing hulls, can be defined in analogy with
the interior case (see Subsection 3.3.2). In particular, we have:
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Lemma 1.4.5 (see Theorem 3.3.12). Let u be a solution of IMCF(((Ω)))+OBS(((∂Ω))). Then
(i) each Et is locally outward minimizing in Ω,
(ii) each E+

t is strictly outward minimizing in Ω,
(iii) each E+

t is the minimizing hull of Et in Ω, provided E+
t \ Et ⋐M .

Below are two examples:

Example 1.4.6. See Figure 1.21: let B be a tiny ball, and we consider the IMCF in the
domain Ω = M \ B with outer obstacle ∂Ω, from the initial value E0. In this case, the
surfaces will first evolve by 1/H until the time T such that

eT |∂E0| = |∂B|+ |S|.

Then, it has a non-trivial minimizing hull in Ω, thus will jump to the surface ∂E+
T as

drawn in the figure. After the jump, ∂E+
T splits into two components ∂B ∪ S. The

component ∂B stays stationary, while the component S continues evolving by 1/H.

∂B

∂ET

−−−
→ →

∂E+
T

S

E0 −→
1/H – flow

−→
1/H – flow

Figure 1.21: behavior of the flow in Example 1.4.6

Example 1.4.7. See Figure 1.22: the domain Ω is an ellipse with a puncture, and the
initial value E0 is the small disk marked with dark grey. The heuristic behavior of the
flow is drawn in the figures by solid curves. The puncture blocks the movement, thus the
curves move forward in the left and right channels around the puncture. At a certain time
T , the two branches of ∂ET merge together through a jump. See the left part of Figure
1.22: at the jump time, the lengths satisfy A+ C = B +D.

E0

∂ET

∂ET

∂E+
T−−−−−−−→

A B

C
D

Figure 1.22: IMCF with obstacle in a punctured ellipse
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It is important to notice that the area grows sub-exponentially in IMCF with outer
obstacle:

Et \ Es ⋐M =⇒ P (Et) ⩽ et−sP (Es), ∀ s < t. (1.4.5)

Indeed, by mutual comparison of energies J̃Ku (Et) = J̃Ku (Es) (for any K ⋑ Et \ Es), we
obtain

P (Et) = P (Es) +

∫
Et\Es

|∇u|

= P (Es) +

∫ t

s

P (Eτ ; Ω) dτ (by coarea formula)

⩽ P (Es) +

∫ t

s

P (Eτ ) dτ,

which implies (1.4.5). From the derivation, we see that (1.4.5) becomes strict when ∂Et
starts to overlap nontrivially with ∂Ω. An extreme case is in Example 1.4.1: there P (Et)
grows exponentially for t < 0 but stays constant for t ⩾ 0.

Aspect 3: as a boundary-orthogonally calibrated IMCF. Running a calibration argu-
ment similar to Fact 1.2.5, we can show the compatibility between the energy (1.4.3) and
the boundary tangency condition (1.4.2). Suppose u ∈ C∞(Ω) satisfies (1.4.1) (1.4.2).
Further, assume (an ideal scenario of) sufficiently strong regularity and convergence. Let
Et be a sub-level set, and let E ⊂ Ω be a competitor with E∆Et ⋐M . By the divergence
theorem, we have (where ν denotes the outer unit normal of the objects):

P (Et) = Hn−1(∂Et ∩ Ω)︸ ︷︷ ︸
where νEt = ∇u/|∇u|

+ Hn−1(∂Et ∩ ∂Ω)︸ ︷︷ ︸
where νEt = νΩ = ∇u/|∇u|

=

∫
∂Et

∇u
|∇u|

· νEt =

∫
∂E

∇u
|∇u|

· νE +

∫
Ω

(χEt − χE) div
( ∇u
|∇u|

)
⩽ P (E) +

∫
(χEt − χE)|∇u|,

(1.4.6)

which is exactly J̃u(Et) ⩽ J̃u(E).
To make sense of this argument for weak flows, again, we may replace the vector field

∇u/|∇u| by an abstract calibration. In particular, we have:

Lemma 1.4.8 (see Lemma 3.3.17).
Let u be a solution of IMCF(((Ω))) which is calibrated by ν. If ν · νΩ = 1 on ∂Ω in the

sense of boundary trace, then the solution u respects the outer obstacle ∂Ω (in the sense
described in Aspect 2).

Aspect 4: as innermost (or maximal) solutions of initial value problems. Let Ω ⋐M
be a smooth domain, and E0 ⋐ Ω be a C1,1 domain. The initial value problem with
obstacle is defined analogously with the interior case: we say that u is a solution of
IVP(((Ω;E0)))+OBS(((∂Ω))), if

(i) u ∈ Liploc(Ω) and E0 = {u < 0},
(ii) u|Ω\E0

is a solution of IMCF(((Ω \ E0)))+OBS(((∂Ω))) with ambient manifold M \ E0.

In condition (ii), note that ∂E0 is not a part of the obstacle. The following is our main
theorem regarding the existence and regularity of solutions to this initial value problem.
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Theorem D. Let Ω ⋐ M be a smooth domain, and let E0 ⋐ Ω be a C1,1 domain. Then
there is a unique solution u of IVP(((Ω;E0)))+OBS(((∂Ω))). Regarding u we have the following
conclusions (for some α < 1):
(i) u ∈ Liploc(Ω) ∩ BV(Ω) ∩ C0,α(Ω),
(ii) u is calibrated by a vector field ν satisfying ⟨ν, νΩ⟩ ⩾ 1− Cd(x, ∂Ω)α.
(iii) ∂Et is a C1,α hypersurface in some small neighborhood of ∂Ω, for all t > 0.
(iv) For any other solution v of IVP(((Ω;E0))), we have u ⩾ v in Ω \ E0.

A refined version of Theorem D can be found in Theorem 3.6.1. Let us remark on a
few aspects of this result:

Remark 1.4.9.

1. Note that item (ii) is a stronger form of Lemma 1.4.8.

2. In view of the Examples 1.4.3 in R2, C1,Hölder is the best possible regularity for the
level sets. We do not know the best possible Hölder exponent.

3. Item (iv) states that the IMCF with outer obstacle coincides with the innermost
solution introduced in the previous section. In fact, we will deduce Theorem C from
Theorem D, by taking limit for an exhaustion of smooth bounded domains. See
Section 4.1 for more details. (Thus, the actual logical order between Theorem C, D
is reverse to our order of introduction.)

4. Item (i) further implies that u ∈ L∞(Ω), namely, the solution sweeps out the entire
Ω within finite time. This feature strongly relies on the regularity of Ω. For instance,
in a conic domain in R2, there exists a shrinking soliton that is unbounded above
near the vertex, see Section 3.1. On the other hand, we have not used the full
smoothness condition of ∂Ω. From the proof of Theorem D, it follows that ∂Ω
being C3 is sufficient.

Theorem D is the most difficult result in this thesis. A sketch of proof is included in
Subsection 3.6.2 (where we will need the setups in Subsection 3.6.1). Here let us explain
the essential ingredient for showing maximality and C1,α regularity.

Idea for maximality. The crucial observation is what we call an “automatic subso-
lution principle”. The following lemma is a simpler version of it:

Fact 1.4.10. Suppose Ω is a locally Lipschitz domain. If a set E is locally outward
minimizing in Ω, then it is locally outward minimizing in Ω.

Proof. Here, let us assume the case where Ω is a precompact C1,1 domain. The general
case is only of extra inessential complexity (see the proof of Lemma 2.2.3).

Suppose F is a competitor with E ⊂ F ⊂ Ω. Our goal is to show that P (E) ⩽ P (F ),
but this does not follow immediately from the lemma’s condition.

We approximate F from inside. For ε ≪ 1, consider the slightly smaller domain
Ωε =

{
x ∈ Ω : d(x, ∂Ω) > ε

}
. Notice that E ∪ (F ∩ Ωε) is a valid competitor with E.

Hence we can compare

P
(
E; Ωε/2

)
⩽ P

(
E ∪ (F ∩ Ωε); Ωε/2

)
.

By the cup-cap inequality, we have

P (F ∩ Ωε; Ωε/2) ⩾ P
(
E ∩ F ∩ Ωε; Ωε/2

)
= P (E ∩ Ωε; Ωε/2),
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E

F ∩ Ωε

Ωε/2

E

F

Ω

Figure 1.23: Inner approximation of sets

which trivially implies

P (F ∩ Ωε) ⩾ P (E ∩ Ωε).

Finally, we take ε→ 0. By the useful Lemma A.6.1, we have

P (F ;K) = lim
ε→0

P (F ∩ Ωε;K), P (E;K) = lim
ε→0

P (E ∩ Ωε;K).

The result follows.

The same fact does not hold for inward minimizing sets (this is an essential point to be
noticed). There are obvious counterexamples: for any bounded domain Ω, we have that
Ω is locally inward minimizing in Ω but not in Ω (the empty set is a valid competitor).

In the same spirit with Fact 1.4.10, we have:

Lemma 1.4.11 (see Theorem 3.3.8). Let Ω be a locally Lipschitz domain. If u is a
subsolution of IMCF(((Ω))), then it is a subsolution of IMCF(((Ω)))+OBS(((∂Ω))).

So it is always easy to produce subsolutions with outer obstacle but hard to produce
supersolutions. With Lemma 1.4.11, the maximality in Theorem D(iv) is then implied by
the following maximum principle:

Lemma 1.4.12 (see Corollary 3.3.20).

Let Ω ⋐ M be locally Lipschitz, and E0 ⋐ Ω be C1,1. Suppose u, v are respectively a
solution and subsolution of IVP(((Ω;E0)))+OBS(((∂Ω))). Then u ⩾ v on Ω \ E0.

Idea for C1,α regularity. The key ingredient for the C1,α regularity in Theorem
D(iii) is a new parabolic estimate that we now explain. For simplicity, let us assume here
that Ω = {xn < 0} ⊂ Rn. Consider a solution {Σt} of the smooth IMCF in Ω, that satisfy
the boundary tangency condition

lim
xn→0
⟨ν, ∂xn⟩ = 1 on each Σt, (1.4.7)

where ν is the outer unit normal of Σt. We wish to show that (1.4.7) implies the estimate

⟨ν, ∂xn⟩ ⩾ 1− C|xn|γ in {−1/2 < xn < 0}, (1.4.8)

for some constants C > 0, γ ∈ (0, 1).
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Before starting this estimate, let us investigate the effect of (1.4.8). First, (1.4.8)
implies that each Σt is tangent to ∂Ω. So near ∂Ω, we may express Σt as the graph over
{xn = 0} of a function f with small gradient. We may do an approximate calculation

⟨ν, ∂xn⟩ =
1√

1 + |∇f |2
≈ 1− 1

2
|∇f |2.

Hence, (1.4.8) implies an ODE inequality |∇f | ⩽ C|f |γ/2. Solving this, we infer that
near each x ∈ Σt ∩ ∂Ω, the hypersurface Σt is sandwiched between ∂Ω = {xn = 0} and{
xn = −C|x′|1/(1−γ/2)

}
. This is spiritually a C1,α regularity statement for Σt at ∂Ω.

xn = 0

xn = −C|x′|1/(1−γ/2)

Σt

Figure 1.24: Hölder barrier from (1.4.8)

We now come back to the main estimate. It turns out that (1.4.7) alone is not enough
to imply (1.4.8). We also need the following uniform condition on the normal vector:

⟨ν, ∂xn⟩ > 0 in {−1 < xn < 0}. (1.4.9)

Without this condition, there can be IMCFs issuing from a pole, which do not satisfy
(1.4.8). See Figure 1.25: the left case is the nephroid Example 1.4.4, while the right case
is an IMCF issuing from an arbitrary interior point and respecting the obstacle {xn = 0}.
It is clear that both cases violate (1.4.8).

Figure 1.25: The failure of (1.4.8) without (1.4.9)

Let us now assume (1.4.7) (1.4.9) and start the estimate. We refer the reader to [31, 54]
as helpful references for general parabolic estimates on the IMCF. Let □ = ∂t −H−2∆Σ

be the parabolic operator associated to the IMCF. In the region {−1 < xn < 0}, consider
the quantities

(1) p = ⟨ν, ∂xn⟩,
(2) η = η(xn) a smooth positive function to be determined.

Denote η′ = η′(xn) and η′′ = η′′(xn). We have the equations (see [31, Lemma 2.6, 2.8])

□p =
|A|2

H2
p, □η = 2

pη′

H
− η′′

H2
(1− p2). (1.4.10)

Recall that we assumed p > 0 in (1.4.9). Hence, the right hand side of □p is a strong
positive term which turns out to dominate all the other terms.
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Furthermore, we have the general product rule

□(XY ) = X□Y + Y□X − 2

H2
⟨∇ΣX,∇ΣY ⟩, (1.4.11)

and the useful formula

|∇Ση|2 = (η′)2(1− p2), (1.4.12)

both can be directly verified.
Denote q = 1− p. Using (1.4.10) (1.4.11) (1.4.12) we calculate

□(qη) = q□η + η□q − 2

H2
⟨∇Σq,∇Ση⟩

= 2q
pη′

H
− η′′

H2
q2(1 + p)− |A|

2

H2
pη − 2

H2η
⟨∇Σ(qη),∇Ση⟩+

2

H2

(η′)2

η
q2(1 + p).

Using Young’s inequality, the trace inequality |A|2 ⩾ H2/(n− 1), and noting that p > 0,
we have

□(qη) ⩽
[ pη

n− 1
+

q2

H2
(n− 1)p

(η′)2

η

]
− η′′

H2
q2(1 + p)− pη

n− 1
+

2

H2

(η′)2

η
q2(1 + p)− 2

H2η
⟨∇Σ(qη),∇Ση⟩

=
q2

H2

[
− η′′(1 + p) +

(η′)2

η
(np+ p+ 2)

]
− 2

H2η
⟨∇Σ(qη),∇Ση⟩.

Now choose η(xn) = (δ − xn)−γ, where 0 < δ ≪ 1 and 0 < γ < 1. We obtain

□(qη) ⩽
q2

H2
(δ − xn)−γ−2

[
− γ(γ + 1)(1 + p) + γ2(np+ p+ 2)

]
− 2

H2η
⟨∇Σ(qη),∇Ση⟩.

Choosing γ = 2
n+1

and simplifying the expressions, we have

□(qη) ⩽ −2(n− 1)

(n+ 1)2
q3

H2
(δ − xn)−γ−2 − ⟨∇Σ(qη), X⟩,

for some vector field X. This suggests from maximum principles that an estimate of the
type

sup
−1<xn⩽0

(qη) ⩽ max
{

sup
xn=−1

(qη), sup
xn→0−

(qη)
}
⩽ 4.

is expected. Note that limxn→0− q = 0 by the tangency condition (1.4.7). Taking δ → 0,
the estimate becomes

⟨ν, ∂xn⟩ ⩾ 1− C|xn|γ,

which is our desired result.
The above calculation is a simplified version of Section 3.5. There the full estimate is

done in C3 domains in Riemannian manifolds.

The remaining obvious question is why a uniform bound like (1.4.9) is obtainable in
the context of Theorem D. This is also asking why the nephroid example 1.4.4 does not
appear in Theorem D. Very roughly speaking, this is because u ⩾ 0 in an initial value
problem, while the nephroid example is unbounded from below. This observation is linked
to the following Liouville theorem:
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Lemma 1.4.13 (see Theorem 3.4.1). Let Ω = {xn < 0} ⊂ Rn, and suppose that u ∈
Liploc(Ω) is a solution of IMCF(((Ω)))+OBS(((∂Ω))). Moreover, suppose

inf
Ω

(u) > −∞ and |∇u(x)| ⩽ C

|xn|
for a.e. x ∈ Ω. (1.4.13)

Then u must be constant.

The way to deduce the uniform bound (1.4.9) from Lemma 1.4.13 is a blow-up argu-
ment. Very roughly speaking, if (1.4.9) does not hold, then there is a sequence of worse
and worse examples, which by taking a limit leads to a solution violating Lemma 1.4.13.
A precise description of this process requires much more setup. We decide to end the
explanations here, and direct interested readers to Section 3.6.

Aspect 5: as an IMCF with Dirichlet boundary condition. This is related to the
fact that the IMCF equation div

( ∇u
|∇u|

)
= |∇u| is a 1-Laplacian type equation. Here, the

1-Laplacian is defined as

∆1(u) = div
( ∇u
|∇u|

)
.

It is the Euler-Lagrange operator for the energy u →
∫
|∇u|, and is degenerate-elliptic.

It is a general phenomenon that the Dirichlet problem for 1-Laplacian type equations has
an outer obstacle feature. An example is the first Dirichlet eigenvalue of the 1-Laplacian,
defined as

λ1(∆1) := inf
u∈Lip0(Ω)

∫
Ω
|∇u|∫
Ω
|u|

. (1.4.14)

However, the infimum in this definition is not attained by any function in Lip0(Ω). For
example, taking Ω = B(0, 1) ⊂ Rn, for any u ∈ Lip0(Ω) we have∫

|∇u| =
∫
|∇|u|| =

∫ ∞

0

P
(
{|u| > t}

)
dt > n

∫ ∞

0

∣∣{|u| > t}
∣∣ dt = n

∫
|u|,

where we used the Poincaré inequality

P (E) > n|E|, ∀E ⋐ B(0, 1).

The “minimizer” for (1.4.14) should be the constant function 1, which is a bit problematic
since 1 /∈ Lip0(Ω). The resolution is to consider the relaxed energy

λD1 (∆1) = inf
u∈BV(Ω)

∥Du∥(Ω) +
∫
∂Ω
|u|∫

Ω
|u|

, (1.4.15)

where the term
∫
∂Ω
|u| is in the sense of boundary trace. In (1.4.15), we allow u to take

nonzero value on ∂Ω, but at the cost of the penalty term. For a minimizer u of (1.4.15),
every super-level set of u is a Cheeger set, namely, a solution of the constrained minimizing
problem

Ch(Ω) := inf
{P (E)

|E|
: E ⊂ Ω

}
. (1.4.16)

See [60, 61] and references therein. In particular, the obstacle problem (1.4.16) is naturally
imposed for each super-level set.



1.4. IMCF WITH OUTER OBSTACLE 37

For the weak IMCF with outer obstacle, the following energy can be viewed as the
relaxation of the interior energy (1.2.8)

J̃Ku (v) =

∫
Ω∩K

(
|∇v|+ v|∇u|

)
−
∫
∂Ω∩K

v. (1.4.17)

The formulation based on this energy turns out to be equivalent to our previous definition
using J̃Ku (E). See Subsection 3.3.3 for more details. Note that the boundary integral in
(1.4.17) has negative sign. This suggests that energy minimizers tend to be maximized
at ∂Ω. This is consistent with the fact that solutions of IMCF with outer obstacle are
maximal.

Going further in this thread of thoughts, we may also view the IMCF with outer
obstacle as a “solution” with the following “properness Dirichlet condition”: div

( ∇u
|∇u|

)
= |∇u| in Ω,

u = +∞ on ∂Ω.

As the solution of a 1-Laplacian type equation, we do not expect u to really attain +∞ on
∂Ω. In turn, the boundary term

∫
∂Ω
u in (1.4.3) is the “penalty for not achieving +∞”.

The above ideas may be made more clear when being connected to the topic of p-
harmonic functions. Let p > 1, recall that the p-Laplacian is defined as

∆pu = div
(
|∇u|p−2∇u

)
.

This is the Euler-Lagrange operator for the energy u 7→
∫
|∇u|p, and is strictly elliptic.

The first Dirichlet eigenvalue of ∆p in a bounded domain Ω is defined as

λD1 (∆p) := inf
u∈W 1,p

0 (Ω)

∫
Ω
|∇u|p∫
Ω
|u|p

. (1.4.18)

It is well-known that there exists a minimizer u ∈ W 1,p
0 (Ω) of this energy, and u solves the

equation ∆pu = −λ1|u|p−1 weakly in Ω. The eigenvalues and eigenfunctions of ∆p and
∆1 have an intimate relation: it can be shown, see [60], that λD1 (∆1) = limp→1 λ

D
1 (∆p).

Moreover, for a sequence of ∆p-eigenfunctions up normalized in some suitable sense, there
is a subsequence that L1 converges to a ∆1-eigenfunction (i.e., a minimizer of (1.4.15)).

We are thus motivated to find the IMCF analogue of this convergence. Recall Moser’s
discovery [89] of the connection between p-harmonic functions and the IMCF: if v is a
positive p-harmonic function, then u := (1− p) log v is a weak solution of the equation

∆pu = |∇u|p, (1.4.19)

which is formally the IMCF equation when p = 1. This is made precise through the
following statement [89]: if {vp} are positive p-harmonic functions in a domain Ω, and
the convergence

(p− 1) log vp → u

holds in C0
loc(Ω) for a sequence p → 1, then u is a weak solution of IMCF. This relation

was further explored in [15, 65, 79] to solve the initial value problem of weak IMCF.
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Now given E0 ⋐ Ω ⋐ M . The p-capacitary potential associated to Ω and E0 is the
unique solution u ∈ W 1,p

0 (Ω) of the following equation:
∆pvp = 0 in Ω \ E0,

vp = 1 on ∂E0,

vp = 0 on ∂Ω.

(1.4.20)

By the classical analytic results [71, 72], we have vp ∈ C1,α(Ω \E0). Here the exponent α
and the C1,α norm is generally not uniformly controlled as p→ 1.

Note that vp is the smallest p-harmonic function in Ω \ E0 with vp|∂E0 = 1. Taking
Moser’s transformation up = (p− 1) log vp, we see that

up|∂E0 = 0, up ⩾ 0, up|∂Ω = +∞,

and up is the largest solution of (1.4.19) in Ω\E0 that takes value 0 on ∂E0. The following
theorem shows that, as p→ 1, the functions up converge to the IMCF with outer obstacle.
This is reasonable in the sense that the limit of maximal solutions should be maximal.

Theorem E. Let Ω ⋐M be a smooth domain, and E0 ⋐ Ω be a C1,1 domain. Let vp solve
(1.4.20), and set up = (1− p) log vp. Then a subsequence of up converges in C0

loc(Ω \ E0)
to the unique solution of IVP(((Ω;E0)))+OBS(((∂Ω))), as p→ 1.

This theorem is a direct consequence of the proof of Theorem D and a result of Benatti-
Pluda-Pozzetta [15]; see Section 3.7 for more details. The search for a potential-theoretic
proof of this result may be of its own interest. Theorem E will appear in the note [14]
joint with L. Benatti, L. Mari, M. Rigoli, and A. Setti.

We end this section with a remark on other boundary conditions that have appeared
in the literature.

Remark 1.4.14. The IMCF with Neumann condition, or free boundary condition, has
received some attention in past references. See the works of Marquart [83, 84], and a nice
application due to Koerber [64]. The IMCF with Neumann condition is characterized by
the energy

ĴKu (E) = P (E;K ∩ Ω)−
∫
E∩K∩Ω

|∇u|, E ⊂ Ω.

Namely, we only include the part of perimeter in Ω. This has the effect that every ∂Et is
perpendicular to ∂Ω. The initial value problem can be similarly defined. We notice that
if E0 ⋐ Ω ⋐M , the only solution of the initial value problem with Neumann condition is
u ≡ 0. Indeed, we may always compare (for any t > 0 and K ⋑ Ω)

ĴKu (Et) ⩽ ĴKu (Ω) ⇒ P (Et; Ω) ⩽ P (Ω; Ω)−
∫
Ω\Et
|∇u| = −

∫
Ω\Et
|∇u|.

This immediately implies u = 0. Thus, no nontrivial theory comes out for Neumann
conditions in bounded domains.

Remark 1.4.15. In parallel, the obstacle problem for mean curvature flow has been
studied in some depth. See, for example, [2, 74, 87] for the smooth flow, and [45, 86, 96]
for the level set flow. The flow is based on viscosity characterizations in these works, and
one often obtains C1,1 regularity for the solution, see e.g. [87, 96].
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1.5 IMCF and scalar curvature

Let {Σt} be a smooth solution of IMCF by compact surfaces in a 3-manifold. Then
the following formula can be directly calculated, see for example [53, p. 395-396]:

d

dt

∫
Σt

H2 ⩽ 4πχ(Σt)−
∫
Σt

R− 1

2

∫
Σt

H2. (1.5.1)

Particularly, the Euler characteristic term arises from the use of Gauss-Bonnet formula
(which is the reason that we restrict to dimension three).

Now consider the weak IMCF. By our heuristic picture, a weak IMCF is a combination
of 1/H-flow and jumpings. In the 1/H-flow periods, (1.5.1) should remain true. In a
jump, the hypersurface moves from Et to its minimizing hull E+

t . Note that ∂E+
t \ ∂Et is

a minimal surface. Hence through a jump, a part of H2 is lost and
∫
H2 is expected to

decrease as well. This suggests that (1.5.1) may hold for the weak IMCF as well, in some
weak sense. Through a nontrivial analytic argument, [53] showed that this is indeed the
case: if u solves IMCF(((Ω))), and s < t ∈ R is such that Et \ Es ⋐ Ω, then we have∫

∂Et

H2 −
∫
∂Es

H2 ⩽
∫ t

s

(
4πχ(Στ )−

∫
Στ

R− 1

2

∫
Στ

H2
)
dτ, (1.5.2)

which is known as the weak Geroch monotonicity. This differential inequality is the key
to most of the applications of IMCF to scalar curvature. It played a main role in the
following works:

� Riemannian Penrose inequality for single horizon [53];

� The fact that the Yamabe constant of RP3 is realized by the round metric [20];

� Mass-capacity inequality for asymptotically flat manifolds [19];

� Works on the hyperbolic Penrose inequality [70, 93];

� (Anti-)isoperimetric inequalities on asymptotically flat manifolds [101], and the ex-
istence of isoperimetric sets [6] [24, Appendix K];

� The study of renormalized volume and isoperimetric sets in asymptotically hyper-
bolic spaces [21, 29];

� The isoperimetric Penrose inequality [12], see also [11]; a weak isoperimetric positive
mass theorem [6];

� An IMCF proof of the Ricci pinching conjecture [55].

In this thesis, we prove the following two theorems as new applications:

Theorem F. Suppose M is a closed 3-manifold such that π2(M) ̸= 0 and M is not
covered by S2 × S1. Then for any metric g on M we have

sys π2(M, g) ·min
M

Rg ⩽ 24π · 2−
√

2

4−
√

2
(≈ 5.44π). (1.5.3)

Here, the π2 – systole of a manifold is defined as the minimal area of homotopically
nontrivial immersed 2-spheres. For the motivation, related results and proof details of
this theorem, we refer the reader to Section 5.2. Very roughly speaking, Theorem F is
proved by running a proper weak IMCF on the universal cover of M .

With O. Chodosh and Y. Lai [30] we showed the following theorem:
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Theorem G. Let (M, g) be a complete, connected, contractible Riemannian 3-manifold
satisfying R ⩾ 0 and bounded geometry:

|Rm | ⩽ Λ2, inj ⩾ Λ−1. (1.5.4)

Then M is diffeomorphic to R3.

It is also shown in [30] that handlebodies with genus ⩾ 2 do not admit metrics with
R ⩾ 0 and bounded geometry. Theorem G is proved by running the innermost weak IMCF
on M from a tiny geodesic ball. Again, we refer to Section 5.3 for relevant discussions.



Chapter 2

Interior weak IMCF

Section 2.1 is a technical review of the weak IMCF. In Section 2.2, we prove some
useful auxiliary results which are for later use. In Section 2.3 we introduce the notion of
calibrated IMCF. In Section 2.4, we summarize Huisken-Ilmanen’s elliptic regularization
process. Finally, in Section 2.5 and 2.6, we prove Theorems A, B respectively.

2.1 Preliminaries on the weak IMCF

In this section, we collect the precise definitions and basic properties of the weak
IMCF. We closely follow the introduction chapter, as well as the materials in [53, p.
364–375]. Some proof details are provided for the reader’s convenience.

2.1.1 Weak IMCF in a domain

Definition 2.1.1. Let K ⋐ Ω ⊂M be domains, and u ∈ Liploc(Ω), and E be a set with
locally finite perimeter in Ω. We define the energy

JKu (E) := P (E;K)−
∫
E∩K
|∇u|. (2.1.1)

We say that a set E locally minimizes Ju (resp. minimizes from outside, inside) in Ω,
if for all F (resp. for all F ⊃ E, F ⊂ E) and domain K satisfying E∆F ⋐ K ⋐ Ω, it
holds JKu (E) ⩽ JKu (F ).

Definition 2.1.2 (weak IMCF).
We say that u ∈ Liploc(Ω) is a (sub-, super-) solution of IMCF(((Ω))), if for each t ∈ R,

the sub-level set Et := {u < t} locally minimizes Ju (resp. locally minimizes from outside,
inside) in Ω in the sense of Definition 2.1.1.

Solutions satisfying Definition 2.1.2 will usually be called interior weak solutions, to
distinguish them from weak solutions with obstacles defined in the next chapter. When
there is a need to clarify the background Riemannian metric, we will write IMCF(((Ω, g))) to
denote weak solutions of IMCF in the domain Ω with the metric g.

A few remarks and useful facts are in order:

Remark 2.1.3. A more well-known definition of the weak IMCF is the following. For
functions u, v ∈ Liploc(Ω) and domain K ⋐ Ω, define

JKu (v) :=

∫
K

|∇v|+ v|∇u|. (2.1.2)

41
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Then u ∈ Liploc(Ω) is a (sub–, super–) solution of IMCF(((Ω))) if and only if for all v ∈
Liploc(Ω) (resp. for all v ⩽ u, v ⩾ u) and domain K satisfying {u ̸= v} ⋐ K ⋐ Ω, one
has

JKu (u) ⩽ JKu (v).

The equivalence of these two definitions is proved in [53, Lemma 1.1].

Remark 2.1.4. The following properties of the weak IMCF may be useful.

(i) If u solves IMCF(((Ω))), then u solves IMCF(((Ω′))) for any sub-domain Ω′ ⊂ Ω. We warn
that there is no converse statement: if Ω =

⋃
Ωi and u solves IMCF(((Ωi))) for each i,

then u may not be a solution of IMCF(((Ω))).

(ii) u is a solution of IMCF(((Ω))) if and only if u is simultaneously a subsolution and
supersolution of IMCF(((Ω))). Indeed, let t ∈ R and E be a competitor set of Et, with
E∆Et ⋐ K ⋐ Ω. We may use the subsolution property to compare

JKu (Et) ⩽ JKu (E ∪ Et) ⇒ P (Et;K) ⩽ P (E ∪ Et;K)−
∫
E\Et
|∇u|.

Then, using the supersolution property, we may compare

JKu (Et) ⩽ JKu (E ∩ Et) ⇒ P (Et;K) ⩽ P (E ∩ Et;K) +

∫
Et\E
|∇u|.

Finally, the cup-cap inequality (A.1.9) states that

P (E ∪ Et;K) + P (E ∩ Et;K) ⩽ P (E;K) + P (Et;K).

Adding these together, we obtain exactly JKu (Et) ⩽ JKu (E).

(iii) For any K ⋐ Ω, we have
∫
K
|∇u| ⩽ P (K). This follows by choosing sufficiently

negative t and comparing JK
′

u (∅) = JK
′

u (Et) ⩽ JK
′

u (K), ∀K ′ ⋑ K.

(iv) If u is a (sub–, super–) solution of IMCF(((Ω))), then so is uT := min{u, T} for any
T ∈ R. First consider the supersolution case: suppose t ∈ R and E ⊂ Et(uT ) is a
competitor with Et(uT ) \E ⋐ K ⋐ Ω. If t > T , then Et(uT ) = Ω, so we must have
E = Ω \ L for some L ⋐ K. Then

JKu (E)− JKu (ET ) = P (L) +

∫
L

|∇u| ⩾ 0.

If t ⩽ T , then Et(uT ) = Et(u) and u = uT inside Et(uT ), so we have

JKuT (Et(uT )) = JKu (Et(u)) ⩽ JKu (E) = JKuT (E).

Then consider the subsolution case: suppose E ⊃ Et(uT ) is a competitor with
E \ Et(uT ) ⋐ K ⋐ Ω. If t > T , then we have Et(uT ) = E = Ω and the result
trivially follows. If t ⩽ T , then

JKuT (E)− JKuT (Et(uT )) = P (E;K)− P (Et(u);K)−
∫
E\Et(u)

|∇uT |

⩾ P (E;K)− P (Et(u);K)−
∫
E\Et(u)

|∇u|

= JKu (E)− JKu (Et(u)) ⩾ 0.
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(v) Exponential growth of area: if Et \ Es ⋐ Ω for some s < t ∈ R, then

P (Et) = et−sP (Es). (2.1.3)

To prove this, we take any K with Et \ Es ⋐ K ⋐ Ω. Then JKu (Et) must be equal
to JKu (Es) since they are both local energy minimizers. Hence

P (Et) = P (Es) +

∫
Et\Es

|∇u| =
∫ t

s

P (Eτ ) dτ

by expanding the energy functional and plugging the coarea formula. Using Gron-
wall’s inequality, (2.1.3) follows.

(vi) Constant functions are solutions of IMCF(((Ω))). If Ω is compact (for example, a closed
manifold), then constant functions are the only solutions of IMCF(((Ω))). This follows
by comparing JΩ

u (Et) ⩽ JΩ
u (Ω) ⇒ P (Et) = 0 for all t.

(vii) If u solves IMCF(((Ω))), then each E+
t locally minimizes Ju as well. This is proved using

the standard set-replacing argument (see Lemma A.2.5).

Lemma 2.1.5 (outward minimization). Suppose u solves IMCF(((Ω))). Then:
(i) each Et is locally outward minimizing in Ω,
(ii) each E+

t is strictly outward minimizing in Ω,
(iii) if E+

t \ Et ⋐ Ω, then E+
t is the minimizing hull of Et in Ω.

Proof. See Facts 1.2.9∼ 1.2.14 in the introduction.

The measure-theoretic properties of sub-level sets are important. Suppose u solves
IMCF(((Ω))). In Lemma 2.1.5, we may compare Et with Et ∪K, for all K ⋐ Ω. This gives

P (Et;K) ⩽ P (K), (2.1.4)

which is a uniform mass bound for level sets. Hence, for a sequence of sub-level sets of
IMCFs, we may invoke Theorem A.1.2 to extract a limit.

For each t and any competitor E with E∆Et ⋐ K ⋐ Ω, the minimization of (2.1.1)
implies

P (Et;K) ⩽ P (E;K) + sup
K
|∇u| · |E∆Et|. (2.1.5)

Therefore, each Et is an almost perimeter minimizer in Ω as defined in Section A.2.
Furthermore, it holds that Et coincides with its measure-theoretic interior (see (A.1.1)):

Lemma 2.1.6. Suppose u ∈ Liploc(Ω) is a solution of IMCF(((Ω))). Then for every t we

have Et = E
(1)
t and Ω \ E+

t = (Ω \ E+
t )(1).

Proof. We first show Et = E
(1)
t . As Et is open, it suffices to show E

(1)
t ∩∂Et = ∅. Suppose

x ∈ ∂Et. Since u is continuous, there exists a sequence of times ti ↗ t and points
xi ∈ ∂∗Eti with xi → x. Since Et =

⋃
iEti , by (2.1.5) and Theorem A.2.2(iii) it follows

that x /∈ E(1)
t . The other statement follows from the same argument, by approximating

with ti ↘ t.

As a result, we have the following facts:
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Lemma 2.1.7 (regularity of level sets). Suppose u solves IMCF(((Ω))). Then
(i) Each ∂Et and ∂E

+
t is a C1,α (∀α < 1/2) hypersurface except for a singular set of

Hausdorff dimension at most n− 8.
(ii) For each t ∈ R, we have ∂Es → ∂Et when s ↗ t and ∂Es → ∂E+

t when s ↘ t:
the convergence holds in the local C1,β topology (∀ β < 1/2) when n ⩽ 7, and in local
Hausdorff topology in all dimensions.

Proof. This follows by combining Lemma 2.1.6 and Theorems A.2.1, A.2.2.

2.1.2 Initial value problem

Definition 2.1.8 (initial value problem; cf. [53, p. 367-368]).
Given a domain Ω ⊂ M and a C1,1 domain E0 ⊂ Ω such that ∂E0 ∩ ∂Ω = ∅. We say

that u is a (sub-, super-) solution of IVP(((Ω;E0))), if

u ∈ Liploc(Ω), E0 = {u < 0},

and one of the following equivalent conditions holds.
(1) u|Ω\E0

is a (sub-, super-) solution of IMCF(((Ω\E0))).
(2) For any t > 0, any set E ⊃ E0 (resp. any E ⊃ Et, E0 ⊂ E ⊂ Et) and domain K

with E∆Et ⋐ K ⋐ Ω, we have JKu (Et) ⩽ JKu (E).

Proof of equivalence.
The proof is quite technical; the reader may skip the details at first read.
(1)⇒ (2). Let Et, E,K be as in (2). The possible issue is that ∂E may touch ∂E0,

hence E may not be a valid competitor when trying to use (1). To resolve this issue, we
use an approximation argument. We may slightly modify K so that Hn−1(∂K∩∂E0) = 0.
For ε > 0, consider the slightly larger sets

Eε
0 =

{
d(·,Ω) < ε

}
, Eε = E ∪ Eε

0.

Since u ∈ Liploc(Ω), we have ∂Et∩∂E0 = ∅. It can be checked that Et∆E
ε ⋐ Ω \E0, and

in the case of supersolution, Eε ⊂ Et for all small enough ε. Now we may compare

JKu (Et) +

∫
K∩Eε/20

|∇u| = JK\Eε/20
u (Et) ⩽ JK\Eε/20

u (Eε) = JKu (Eε) +

∫
K∩Eε/20

|∇u|,

which implies

P (Et;K)−
∫
Et∩K

|∇u| ⩽ P (Eε;K)−
∫
Eε∩K

|∇u|.

Now we take ε → 0. Apply Lemma A.6.1 with “ Ω ” = Ω \ E0, “ Ωi” = Ω \ Eεi
0 for a

sequence εi → 0, and “A ” = Ω \E. As a result, we have limε→0 P (Eε;K) = P (E;K). It
is obvious that limε→0

∫
Eε∩K |∇u| =

∫
E∩K |∇u|. This proves the desired conclusion.

(2)⇒ (1). Denote ũ = u|Ω\E0 . Let t ∈ R, and E be a competitor with E∆Et(ũ) ⋐
K ⋐ Ω \ E0. We need to show that JKũ (Et(ũ)) ⩽ JKũ (E). If t > 0, then this follows
verbatim from (2). Now assume t ⩽ 0. Then we note that Et(ũ) = ∅, so we are reduced
to showing that ∫

E

|∇u| ⩽ P (E), ∀E ⋐ Ω \ E0.
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∂E0

∂K

∂E

∂Et

Et∆E
ε→→

→K \ Eε/2
0

Figure 2.1: proof of equivalence, (1)⇒ (2)

Using item (2), for all t > 0 we can compare

JKu (Et) ⩽ JKu (Et ∪ E) ⇒ P (Et;K) +

∫
E\Et
|∇u| ⩽ P (E ∪ Et;K).

By the cup-cap inequality (A.1.9), this implies

P (E ∩ Et;K) +

∫
E\Et
|∇u| ⩽ P (E;K).

Dropping the first term, letting t → 0, and noting that
∫
E\Et |∇u| →

∫
E\E+

0
|∇u| =∫

E
|∇u|, we obtain the desired conclusion.

Similarly, we will write IVP(((Ω, g;E0))) when we need to clarify the background metric.

Lemma 2.1.9. Suppose u solves IVP(((Ω;E0))). Then for any t ⩾ 0, any set E ⊃ E0 and
domain K with E∆Et ⋐ K ⋐ Ω, we have JKu (E+

t ) ⩽ JKu (E).

Proof. Note that E+
t =

⋂
s>tEs, and each Es (s > t ⩾ 0) satisfies the condition in

Definition 2.1.8(2). The lemma then follows from the set-replacing argument.

Lemma 2.1.10 (minimizing hulls in IVP). Suppose u solves IVP(((Ω;E0))). Then:
(i) For each t ⩾ 0, E+

t is the minimizing hull of Et in Ω, provided E+
t \ Et ⋐ Ω.

(ii) P (Et) = etP (E+
0 ) for each t > 0, provided Et ⋐ Ω.

(iii) P (E0) ⩾ P (E+
0 ) provided E+

0 ⋐ Ω. Equality holds if E0 is outward minimizing.
(iv) P (Et) = P (E+

t ) for each t > 0, provided E+
t ⋐ Ω.

Note: combining items (ii)(iii)(iv), we have

E+
t ⋐ Ω ⇒ P (E+

t ) = P (Et) = etP (E+
0 ) ⩽ etP (E0).

Proof of Lemma 2.1.10.
(i) If t > 0, then we have E+

t \ Et ⋐ Ω \ E0, hence this is exactly Lemma 2.1.5(iii).
For the case t = 0, recall that we have Lemma 2.1.9. So we can argue as in Fact 1.2.11
to show that E+

0 is strictly outward minimizing in Ω, then argue in Fact 1.2.14 to show
that E+

0 is the minimizing hull of E0.
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(ii) For each 0 < s < t, we have Et \Es ⋐ Ω \E0. By mutual comparison of energies,
it holds JKu (Es) = JKu (Et) for any K ⋑ Et \ Es. By the coarea formula, this implies

P (Et) = P (Es) +

∫ t

s

P (Eτ ) dτ,

hence implies P (Et) = et−sP (Es). By Lemma 2.1.9, we can make the same comparison
to obtain P (E+

s ) = es−τP (E+
τ ) for any 0 ⩽ τ < s. On the other hand, observe that

|E+
s \ Es| = 0 for almost every s. Combined together, we have P (Et) = etP (E+

0 ).
(iii) Plug in E = E0 in Lemma 2.1.9 and notice that ∇u = 0 in E+

0 \ E0.
(iv) Notice that E+

t \ Et ⋐ Ω \ E0, hence we can make mutual energy comparison
Ju(Et) = Ju(E

+
t ). The result follows by noticing that ∇u = 0 in E+

t \ Et.

Definition 2.1.11 (properness).
Let u be a solution of IVP(((Ω;E0))). We say that u is proper, if Et ⋐ Ω for all t ⩾ 0.

Note that u being proper implicitly implies E0 ⋐ Ω. By Lemma 2.1.10, for a proper
solution we have P (Et) ⩽ etP (E0) for all t ⩾ 0.

2.1.3 Maximum principle and compactness

We state an important maximum principle for the weak IMCF. We call it an “interior
maximum principle”, to distinguish from the maximum principle for IMCF with outer
obstacle (which is contained in the next chapter). In particular, item (iv) states that
proper solutions are unique if exist.

Theorem 2.1.12 (interior maximum principle, [53, Theorem 2.2]).
(i) Let u, v ∈ Liploc(Ω) be respectively a supersolution and subsolution of IMCF(((Ω))),

such that {u < v} ⋐ Ω. Then u ⩾ v.
(ii) Let E0 ⋐ Ω be a C1,1 initial data, and u, v be respectively a supersolution and

subsolution of IVP(((Ω;E0))). Then Et(u) ⊂ Et(v) whenever Et(u) ⋐ Ω.
(iii) Let E0 ⋐ Ω, and u1, u2 be two solutions of IVP(((Ω;E0))). Then Et(u1) = Et(u2)

whenever Et(u1) ⋐ Ω and Et(u2) ⋐ Ω.
(iv) Let E0 ⋐ Ω. Then there exists at most one proper solution of IVP(((Ω;E0))).

Finally, we state the following useful compactness theorem.

Theorem 2.1.13 (interior compactness). Let Ω ⊂ M be a domain, and g be a fixed
smooth Riemannian metric on Ω. Given the following data:

(1) Ωi is a sequence of domains that locally uniformly converge to Ω,
(2) gi are smooth metrics on Ωi, which locally uniformly converge to g,
(3) ui ∈ Liploc(Ωi) solves IMCF(((Ωi, gi))), and ui → u in C0

loc for some u,
(4) for each K ⋐ Ω we have supK |∇ui|gi ⩽ C(K) for all sufficiently large i.

Then u solves IMCF(((Ω, g))). Moreover, if a sequence of sets Ei locally minimizes Jui in
(Ωi, gi), and Ei converges to a set E in L1

loc, then E locally minimizes Ju in (Ω, g).

Proof. The fact that u solves IMCF(((Ω; g))) is already proved in [53, Theorem 2.1]. The new
part of this theorem is the minimizing property of E. This follows from a standard set
replacing argument (see the proof of Lemma A.2.5). In this argument we need the fact
that

∫
A
|∇gu|g dVg = limi→∞

∫
A
|∇giui|gi dVgi for all A ⋐ Ω with finite perimeter. This is
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proved as follows. For any φ ∈ Lip0(Ω) with φ ⩾ 0, by (2)(3)(4) and lower semi-continuity
we have ∫

Ω

φ|∇gu|g dVg ⩽ lim inf
i→∞

∫
Ω

φ|∇giui|gi dVgi . (2.1.6)

On the other hand, we have the energy comparison JKui (ui) ⩽ JKui
(
φu+ (1−φ)ui

)
, where

K is chosen with spt(φ) ⋐ K ⋐ Ω ∩ Ωi for large i. Expanding this inequality we have∫
Ω

φ|∇giui|gi dVgi ⩽
∫
Ω

φ|∇giu|gi dVgi +

∫
Ω

|u− ui|
(
φ|∇giui|gi + |∇giφ|gi

)
dVgi .

Taking i→∞, by the items (2)(3)(4) and (2.1.6), we obtain exact continuity∫
Ω

φ|∇gu|g dVg = lim
i→∞

∫
Ω

φ|∇giui|gi dVgi . (2.1.7)

Combined with item (4), this implies our claim.

2.2 Useful analytic properties

We spend this section proving some useful properties of the weak IMCF.

Below is a full version of the excess inequality (Lemma 1.2.18).

Lemma 2.2.1 (excess inequality).
Suppose u ∈ Liploc(Ω) is a supersolution of IMCF(((Ω))), and t ∈ R. Let F ⋐ Ω be a set

with finite perimeter. Then for any domain K with F ⋐ K ⋐ Ω, we have

P (Et;K) ⩽ P (Et \ F ;K) +

∫ t

infF (u)

et−sP (F ;Es) ds. (2.2.1)

In particular,

P (Et;K) ⩽ P (Et \ F ;K) +
(
et−infF (u) − 1

)
P (F ;Et). (2.2.2)

Proof. Denote t0 = infF (u). By a zero measure modification, we may assume F = F (1).
From the energy comparison JKu (Et) ⩽ JKu (Et \ F ) and the coarea formula, we have

P (Et;K) ⩽ P (Et \ F ;K) +

∫ t

t0

Hn−1
(
∂∗Es ∩ Et ∩ F

)
ds

= P (Et \ F ;K) +

∫ t

t0

Hn−1
(
∂∗Es ∩ F

)
ds

(2.2.3)

Inserting the perimeter cancelation formula (A.1.14) and Lemma 2.1.6, we obtain

Hn−1(∂∗Et ∩ F ) ⩽ P (F ;Et) +

∫ t

t0

Hn−1(∂∗Es ∩ F ) ds.

By a standard Gronwall argument, this implies

Hn−1(∂∗Et ∩ F ) ⩽ P (F ;Et) +

∫ t

t0

et−sP (F ;Es) ds for a.e. t. (2.2.4)

The lemma follows by inserting (2.2.4) into (2.2.3).
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The following lemma provides regularity for interior solutions of the weak IMCF.

Lemma 2.2.2 (a priori global regularity).
Let Ω ⊂M be a locally Lipschitz domain, and u ∈ Liploc(Ω).
(i) If u is a subsolution of IMCF(((Ω))), then for all K ⋐M it holds∫

Ω∩K
|∇u| ⩽ P (Ω ∩K) and P (Et;K) ⩽ P (Ω ∩K) ∀ t ∈ R. (2.2.5)

In particular, u ∈ BVloc(Ω) and each Et has locally finite perimeter in M .
(ii) If u is a supersolution of IMCF(((Ω))), and for all K ⋐ M it holds infΩ∩K u ⩾ T (K)

for some T (K), then each Et has locally finite perimeter in M . More precisely, we have

P (Et; Ω ∩K) ⩽ et−T (K)P (Ω ∩K), P (Et;K) ⩽ 2et−T (K)P (Ω ∩K), (2.2.6)

for all domains K ⋐M . We also have∫
Et∩K

|∇u| ⩽ et−T (K)P (Ω ∩K). (2.2.7)

In particular, if u ∈ L∞
loc(Ω) then u ∈ BVloc(Ω).

Proof. Fix t ∈ R. By Lemma A.5.2, we may find a sequence of locally Lipschitz domains
Ω1 ⋐ Ω2 ⋐ · · · ⋐ Ω, with

⋃
Ωi = Ω, such that Hn−1(∂∗Et ∩ ∂∗Ωi) = 0 for each i and

|µΩi | ⇀ |µΩ| weakly as measures. For K in either statement of the lemma, we choose
another smooth precompact domain K ′ ⋑ K with Hn−1(∂∗Ω ∩ ∂K ′) = 0.

(i) Suppose u is a weak subsolution. For each i we have infΩi+1∩K′ u ⩾ Ti for some
Ti ∈ R; thus ETi ∩ (Ωi+1 ∩K ′) = ∅. Using the subsolution property, we have

0 = JΩi+1∩K′

u (ETi) ⩽ JΩi+1∩K′

u (Ωi ∩K) = P (Ωi ∩K)−
∫
Ωi∩K

|∇u|. (2.2.8)

Letting i→∞ in (2.2.8) and using Lemma A.6.1 (there with the choice A = Ω ∩K and
with K replaced by K ′), we obtain

∫
Ω∩K |∇u| ⩽ P (Ω ∩K). To prove the second state-

ment of (2.2.5), we recall that Et is locally outward minimizing in Ω, hence P (Et;K
′) ⩽

P (Et ∪ (Ωi ∩K);K ′) for each i. This implies P (Et ∩ Ωi ∩K;K ′) ⩽ P (Ωi ∩K;K ′). Tak-
ing i → ∞ and applying Lemma A.6.1 to both sides, we conclude that P (Et ∩K) ⩽
P (Ω ∩K). In particular, it holds P (Et;K) ⩽ P (Ω ∩K). This proves (2.2.5). To obtain
u ∈ BVloc(Ω) we need u ∈ L1

loc(Ω) as well, but this follows from u ∈ Liploc(Ω) and (2.2.5)
and that Ω is locally Lipschitz.

(ii) Suppose u is as in the statement. We first assume that t satisfies Hn−1
(
∂∗Et ∩

∂K
)

= 0. From Lemma 2.2.1 we obtain

P (Et; Ωi+1 ∩K ′) ⩽ P
(
Et \ (Ωi ∩K); Ωi+1 ∩K ′)+ (et−T (K) − 1)P

(
Ωi ∩K;Et

)
.

Since Hn−1(∂∗Et ∩ ∂∗K) = Hn−1(∂∗Et ∩ ∂∗Ωi) = 0 for all i, we can use the perimeter
cancellation formula (A.1.15) to deduce

P
(
Et; Ωi ∩K

)
⩽ P

(
Et; (Ωi ∩K)(1)

)
⩽ P

(
Ωi ∩K;E

(1)
t

)
+ (et−T (K) − 1)P (Ωi ∩K)

⩽ et−T (K)P (Ωi ∩K).

Taking i→∞, this implies the first inequality of (2.2.6). The case of all t follows by lower
semi-continuity. The second inequality in (2.2.6) holds since P (Et;K) = P (Et; Ω ∩K) +
Hn−1

(
∂∗Et ∩ ∂∗Ω ∩K

)
. Finally, (2.2.7) follows by the coarea formula.
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Next, we state the sutomatic subsolution principle for the weak IMCF. We also refer
to Lemma 1.4.10 in the introduction, as well as Theorem 3.3.8 in the next chapter.

Lemma 2.2.3 (automatic subsolution principle).
Suppose Ω is a locally Lipschitz domain, and u is a subsolution of IMCF(((Ω))). Then for

any t ∈ R, any set E and domain K satisfying Et ⊂ E ⊂ Ω and E \ Et ⋐ K ⋐ M , we
have

P (Et;K) ⩽ P (E;K)−
∫
E\Et
|∇u|. (2.2.9)

Note: the finiteness of
∫
E\Et |∇u| is guaranteed by Lemma 2.2.2(i). We remind the

reader again that on both sides of (2.2.9), the perimeters contain the portion in ∂Ω.

Proof of Lemma 2.2.3.
Choose K ⋑ E \Et such that Hn−1(∂∗Ω∩ ∂K) = 0 (recall our flexibility to choose K,

see Remark 1.2.6). By Lemma A.5.2, we can choose Lipschitz domains Ω1 ⋐ Ω2 ⋐ · · · ⋐ Ω,
such that

⋃
Ωi = Ω and |µΩi | ⇀ |µΩ| weakly as measures. By the interior variational

principle, we have

JΩi+1∩K
u (Et) ⩽ JΩi+1∩K

u

(
Et ∪ (E ∩ Ωi)

)
⩽ JΩi+1∩K

u (Et) + JΩi+1∩K
u (E ∩ Ωi)− JΩi+1∩K

u (Et ∩ E ∩ Ωi)

= JΩi+1∩K
u (Et) + JKu (E ∩ Ωi)− JKu (Et ∩ Ωi),

Hence

P (Et ∩ Ωi;K) ⩽ P (E ∩ Ωi;K)−
∫
(E\Et)∩Ωi

|∇u|.

Applying Lemma A.6.1 to both Et and E, and noticing u ∈ BV(K∩Ω) by Lemma 2.2.2(i),
we can take i→∞ and obtain exactly (2.2.9).

The following lemma addresses the merging of two subsolutions. Note that condition
(3) is necessary in view of Lemma 2.1.5(i).

Lemma 2.2.4 (continuation of subsolution).
Suppose u ∈ Liploc(Ω), and Ω′ ⊂ Ω is a locally Lipschitz sub-domain, such that:
(1) u|Ω′ ⩽ T , u|∂Ω′ ≡ T , and u|Ω\Ω′ ⩾ T ,
(2) u|Ω′ is a subsolution of IMCF(((Ω′))), and u|Ω\Ω′ is a subsolution of IMCF(((Ω \ Ω′))),
(3) Ω′ is locally outward minimizing.

Then u is a subsolution of IMCF(((Ω))).

Note that we require the outward minimizing of Ω′. If this does not hold, then not all
subsolutions of IMCF in Ω′ can be extended as a subsolution in Ω.

Proof of Lemma 2.2.4.
Suppose t ∈ R and E ⊃ Et is a competitor set with E \ Et ⋐ K ⋐ Ω. If t > T , then

Et ⊃ Ω′, hence E \ Et ⋐ Ω \ Ω′. So in this case, the result follows from condition (2).
Now assume t ⩽ T . We have Et ⊂ Ω′. By Lemma 2.2.3, we have

P (Et;K) ⩽ P (E ∩ Ω′;K)−
∫
(E\Et)∩Ω′

|∇u|. (2.2.10)

For each ε > 0, using the subsolution property in Ω \ Ω′ we have
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∂E

Ω \ Ω′

Ω′

∂ET−ε

∂ET

∂Ω′

∂ET+ε

Figure 2.2: Level sets of u in Lemma 2.2.4

P (ET+ε;K) ⩽ P (ET+ε ∪ E;K)−
∫
E\ET+ε

|∇u|.

This implies

P (ET+ε ∩ E;K) ⩽ P (E;K)−
∫
E\ET+ε

|∇u|. (2.2.11)

By condition (3), we have

P (Ω′;K) ⩽ P
(
Ω′ ∪ (ET+ε ∩ E);K

)
⇒ P (Ω′ ∩ E;K) ⩽ P (ET+ε ∩ E;K). (2.2.12)

Adding (2.2.11) (2.2.12) and taking ε→ 0, we obtain

P (Ω′ ∩ E;K) ⩽ P (E;K)−
∫
E\E+

T

|∇u| = P (E;K)−
∫
E\Ω′
|∇u|. (2.2.13)

Adding (2.2.10) and (2.2.13), we obtain exactly JKu (Et) ⩽ JKu (E).

2.3 Calibrated solutions

As we have noticed in the introduction, the notion of calibration underlies the entire
theory of weak IMCF. In this section, we give an extended discussion on this topic.

Definition 2.3.1. Let Ω be a domain in a manifold M , and u ∈ Liploc(Ω). We say that
u is a calibrated solution of IMCF in Ω, if there is a measurable vector field ν such that:

(1) ess supΩ |ν| ⩽ 1, and ⟨∇u, ν⟩ = |∇u| almost everywhere,
(2) for all φ ∈ Lip0(Ω) we have∫

Ω

(
∇φ · ν + φ|∇u|

)
= 0. (2.3.1)

Given a solution u of IMCF(((Ω))), we say that u is calibrated by ν, if (1)(2) are satisfied for
the data u, ν.

A calibrated solution is always a solution of IMCF(((Ω))), since it satisfies Remark 2.1.3.
Indeed, given v ∈ Liploc(Ω) with {u ̸= v} ⋐ M , the inequality Ju(u) ⩽ Ju(v) follows by
taking φ = u− v in (2.3.1).
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Remark 2.3.2. Suppose a solution u of IMCF(((Ω))) is calibrated by ν. Then for almost
every t, we have νEt = ν a.e. on ∂∗Et ∩ Ω.

Indeed, for a.e. t, we have that u is differentiable and |∇u| > 0 a.e. on ∂∗Et∩Ω. Also,
recall that ∂∗Et ∩ Ω is a C1,α hypersurface. The result follows.

We prove the following compactness theorem for calibrated solutions. In item (6)
below, we say that a sequence of vector fields νi converge to ν weakly in L1

loc, if for all
L∞ vector field X with supp(X) ⋐ Ω, we have

∫
Ω
⟨ν,X⟩ = limi→∞

∫
Ω
⟨νi, X⟩. This notion

of convergence is independent of the choice of background metric.

Theorem 2.3.3 (compactness of calibrated solutions). Let Ω ⊂ M be a domain, and g
be a fixed smooth Riemannian metric on Ω. Given the following data:

(1) Ωi is a sequence of domains that locally uniformly converge to Ω,
(2) gi are smooth metrics on Ωi, which locally uniformly converge to g,
(3) ui ∈ Liploc(Ωi) solves IMCF(((Ωi, gi))) and are calibrated by νi,
(4) for each K ⋐ Ω we have supK |∇ui|gi ⩽ C(K) for all sufficiently large i,
(5) ui locally uniformly converges to a function u on Ω,
(6) νi converges to a vector field ν weakly in L1

loc.
Then u is solves IMCF(((Ω, g))) and is calibrated by ν.

Proof. From items (2)(4)(5) we have u ∈ Liploc(Ω). From (2)(6) and ess sup |vi|gi ⩽ 1 we
have ess sup |v|g ⩽ 1. We have argued in (2.1.7) that for any φ ∈ Lip0(Ω) with φ ⩾ 0, it
holds ∫

φ|∇gu|g dVg = lim
i→∞

∫
φ|∇giui|gi dVgi . (2.3.2)

Clearly, this identity holds for all φ ∈ Lip0(Ω) as well.
Suppose φ ∈ Lip0(Ω). It follows from items (2)(6) that∫

⟨ν,∇gφ⟩g dVg = lim
i→∞

∫
⟨νi,∇giφ⟩gi dVgi . (2.3.3)

Recall that each pair (ui, νi) satisfies∫ (
⟨νi,∇giφ⟩gi + φ|∇giui|gi

)
dVgi = 0.

Taking i→∞ and combining with (2.3.2) (2.3.3), the identity (2.3.1) is verified.
Finally, we show ⟨ν,∇gu⟩g = |∇gu|g a.e.. Taking φ = uiψ in the calibration condition

(2.3.1) for ui (where ψ ∈ Lip0(Ω) and i is sufficiently large), we obtain

0 =

∫
⟨νi, ui∇giψ + ψ∇giui⟩gi dVgi +

∫
uiψ|∇giui|gi dVgi

=

∫
⟨νi, ui∇giψ⟩gi dVgi +

∫
(1 + ui)ψ|∇giui|gi dVgi . (2.3.4)

By items (2)(5)(6), the first term of (2.3.4) converges to
∫
⟨ν, u∇gψ⟩g dVg. By (2.3.2) and

items (2)(4)(5), the second term of (2.3.4) converges to
∫

(1 + u)ψ|∇gu|g dVg. Therefore,
it holds

0 =

∫
⟨ν, u∇gψ⟩g dVg +

∫
(1 + u)ψ|∇gu|g dVg.
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On the other hand, since we have already verified (2.3.1) for the pair (u, ν), we may apply
φ = uψ there to obtain

0 =

∫
⟨ν, u∇gψ⟩g + ⟨ν, ψ∇gu⟩g + uψ|∇gu|g.

In comparison, it holds ∫
ψ⟨ν,∇gu⟩g =

∫
ψ|∇gu|g.

Since ψ is arbitrary, we conclude that ⟨ν,∇gu⟩g = |∇gu|g a.e.. This proves that u is a
weak solution calibrated by ν.

Now we can prove the converse that every weak IMCF is calibrated.

Lemma 2.3.4. Every solution of IMCF(((Ω))) is calibrated.

This is a consequence of the following general theorem, whose proof uses abstract
convex duality theories.

Theorem 2.3.5 (direct adaptation of [88, Theorem 3.1]). Let Ω be a bounded domain, F
be an L2 vector field in Ω, and H ∈ L2(Ω). Assume that

inf
w∈W 1,2

0 (Ω)

∫
Ω

|∇w + F |+Hw > −∞. (2.3.5)

Then there exists a vector field ν with ||ν||L∞ ⩽ 1 and div(ν) = H weakly. Moreover, for
any minimizer w of (2.3.5), we have ν · (∇w + F ) = |∇w + F | a.e..

Proof of Lemma 2.3.4.
Let u be the given solution of IMCF(((Ω))). We first produce a calibration in any sub-

domain K ⋐ Ω. Apply Theorem 2.3.5 in K, with the choice F = ∇u and H = |∇u|. In
(2.3.5) we make the transform w = v − u. Thus the energy in (2.3.5) becomes

inf
{∫

Ω

|∇v|+ v|∇u| − u|∇u| : v is such that v − u ∈ W 1,2
0 (Ω)

}
.

Since u is a weak solution of IMCF, it is a minimizer of this energy. Hence, (2.3.5) indeed
holds, and w = 0 is a minimizer. Let ν be the vector field obtained from Theorem 2.3.5.
Collecting the conclusions about ν, it follows that ν is a calibration of u in K.

For a general Ω, we find an exhaustion K1 ⋐ K2 ⋐ · · · ⋐ Ω,
⋃
Ki = Ω. For each

Ki, we obtain a calibration νi. By the Dunford-Pettis theorem, we can extract (up to a
subsequence) a limit ν = limi→∞ νi weakly in L1

loc(Ω). Then applying Theorem 2.3.3, we
see that ν is a calibration of u in Ω.

Lemma 2.3.6. Suppose u, v ∈ Liploc(Ω) are solutions of IMCF(((Ω))). Then w = max{u, v}
is also a subsolution of IMCF(((Ω))).

The picture is as follows: note that Et(max{u, v}) = Et(u) ∩ Et(v). Thus the speed
of movement of max{u, v} is equal to 1/H on the smooth parts but is greater than 1/H
at the corners; see Figure 2.3.

By Lemma 2.3.4, we may assume that u, v are calibrated by νu, νv respectively. Intu-
itively, one may consider the vector field

σ = νuχ{u>v} + νvχ{u⩽v},
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and show that
div σ ⩾ |∇u|χ{u>v} + |∇v|χ{u⩽v}

as Radon measures. Note that the inequality tends to be strict on {u = v}.
Let us näıvely argue that this works in the ideal case that u, v are smooth and 0 is a

regular level set of u− v. Indeed, we can formally calculate

div σ = div(νu)χ{u>v} + νu ·Dχ{u>v} + div(νv)χ{u⩽v} + νv ·Dχ{u⩽v}

= |∇u|χ{u>v} +
∇u
|∇u|

· ∇(u− v)

|∇(u− v)|
· Hn−1⌞{u = v}

+ |∇v|χu⩽v −
∇v
|∇v|

· ∇(u− v)

|∇(u− v)|
· Hn−1⌞{u = v},

and one can easily check that the part concentrated on {u = v} is nonnegative.
In general, {u = v} need not be regular enough. To get around the possible analytic

issues, in the proof we will show that max{u, v+ t} is a subsolution for a sequence t→ 0,
and the result will follow by taking the limit.

{u = v}

∂Et(u)

∂Et(v)

∂Et(min{u, v})

→

νu→νv

Figure 2.3: The maximum of two solutions

Proof of Lemma 2.3.6.
Let νu, νv be calibrations of u, v. For any ε, t ∈ (0, 1), define a function ηε,t with

ηε,t|(−∞,t] ≡ 0, ηε,t|[t+ε,∞) ≡ 1, ηε,t(x) = ε−1(x− t) ∀x ∈ [t, t+ ε].

Then set
σε,t = νu · ηε,t(u− v) + νv ·

(
1− ηε,t(u− v)

)
.

We can calculate

div(σε,t) = ηε,t(u− v) div νu +
(
1− ηε,t(u− v)

)
div νv

+ η′ε,t(u− v)(νu − νv) · (∇u−∇v).
(2.3.6)

Expanding the third term and using the calibration conditions, this implies

div(σε) ⩾ ηε,t(u− v)|∇u|+
(
1− ηε,t(u− v)

)
|∇v|. (2.3.7)
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On the other hand, for any K ⋐ Ω, we have from (2.3.6)∫
K

div(σε,t) ⩽
∫
K

|∇u|+
∫
K

|∇v|+ 2

∫
K

|∇ηε,t(u− v)|.

We use the coarea formula to expand the third term:∫
K

|∇ηε,t(u− v)| = ε−1

∫ t+ε

t

P
(
{u− v < s};K

)
ds.

Hence, by Fatou’s lemma, we have∫ 1

0

lim inf
ε→0

(∫
K

|∇ηε,t(u− v)|
)
dt ⩽ lim inf

ε→0

(∫ 1

0

dt

∫
K

|∇ηε,t(u− v)|
)

⩽ lim inf
ε→0

(∫ 2

0

P
(
{u− v < s};K

))
⩽
∫
K

|∇(u− v)|.

As a result, we have ∫ 1

0

lim inf
ε→0

(∫
K

div(σε,t)
)
dt ⩽ C(K).

Therefore, we can choose a sequence ti → 0 such that

lim inf
ε→0

∫
K

div(σε,ti) ⩽ C(K, i).

So for each ti, we can choose a sequence ε→ 0 so that

σε,ti → σi := νu · χ{u>v+ti} + νv · χ{u⩽v+ti} in L1
loc,

and
div(σε,ti) ⇀ µ

weakly for some Radon measure µ. Hence µ must be the weak divergence of σi.
Set wi = max{u, v + ti}. Passing (2.3.7) to the limit, we obtain

div(σi) ⩾ χ{u>v+ti}|∇u|+ χ{u⩽v+ti}|∇v| = |∇wi| as measures. (2.3.8)

On the other hand, it is clear that |σi| ⩽ 1 and σi · ∇wi = |∇wi| a.e..
Let us now show that wi is a subsolution of IMCF(((Ω))). By Remark 2.1.3, it suffices

to show that for all f ∈ Liploc(Ω) with f ⩽ wi and {f < wi} ⋐ K ⋐ Ω, it holds
JKwi(f) ⩾ JKwi(wi). We may directly calculate

JKwi(f)− JKwi(wi) =

∫
K

(
|∇f | − |∇wi|

)
+

∫
K

(f − wi)|∇wi|

⩾
∫
K

(∇f −∇wi) · σi +

∫
K

(f − wi)|∇wi|

=

∫
K

(wi − f) div(σi) +

∫
K

(f − wi)|∇wi| ⩾ 0.

Finally, we show that w = max{u, v}, as a decreasing limit of wi, is a subsolution of
IMCF(((Ω))) as well. Let f ⩽ w be a competitor with {f < w} ⋐ K ⋐ Ω. Let q ⩾ 0 be any
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Lipschitz function with spt(q) ⋐ K. Then note that fi := qf + (1− q)wi ⩽ wi, thus is a
valid competitor for wi. Hence we can compare JKwi(wi) ⩽ JKwi(fi), implying∫

q|∇wi|+ q(wi − f)|∇wi| ⩽
∫
q|∇f |+ |f − wi| |∇q|. (2.3.9)

First inserting f = w, we obtain∫
q|∇wi|+ q(wi − w)|∇wi| ⩽

∫
q|∇w|+ |w − wi| |∇q|.

Taking i→∞ we note that∫
q|∇w| ⩾ lim sup

i→∞

∫
q|∇wi| ⇒

∫
q|∇w| = lim

i→∞

∫
q|∇wi|.

Replacing q by q(w − f), we also have∫
q(w − f)|∇w| = lim

i→∞

∫
q(w − f)|∇wi| = lim

i→∞

∫
q(wi − f)|∇wi|. (2.3.10)

Now, let us choose q to be a cutoff function, such that 0 ⩽ q ⩽ 1 and {f < w} ⋐ {q = 1}.
Taking (2.3.9) to the limit and inserting (2.3.10), we obtain∫

q|∇w|+ q(w − f)|∇w| ⩽
∫
q|∇f |+ |f − w||∇q|.

Using the defining property of q, this directly implies∫
|∇w|+ (w − f)|∇w| ⩽

∫
|∇f |.

Hence w is a subsolution of IMCF(((Ω))).

2.4 Elliptic regularization

In [53], the initial value problem of weak IMCF is solved by means of elliptic regular-
ization. For ε > 0, the ε-regularized IMCF equation refers to

div
( ∇u√

ε2 + |∇u|2
)

=
√
ε2 + |∇u|2. (2.4.1)

This equation is strictly elliptic, so solutions can be found by standard techniques. The
strategy in [53] is to solve (2.4.1) and then pass to a limit with ε → 0. It eventually led
to the following existence theorem:

Theorem 2.4.1 ([53, Theorem 3.1]). LetM be complete, connected, noncompact. Suppose
there exists a function v ∈ Liploc(M) such that

(1) Et(v) ⋐M for all t > 0,
(2) v is a subsolution of IMCF((({v > 0}))).

Then for all C1,1 domains E0 ⋐ M , there is a unique proper solution u of IVP(((M ;E0))).
Moreover, we have the estimate

|∇u|(x) ⩽ sup
B(x,r)

H+ + C(n)r−1, ∀x ∈M \ E0, r ⩽ σ(x;M). (2.4.2)
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Here, the notation σ(x;M) is defined as follows, which we shall keep using later.

Definition 2.4.2. Let Ω be a domain in M , and g be a Riemannian metric on M . For
x ∈ Ω, we define σ(x; Ω, g) to be the supremum of radius r such that

(1) Bg(x, r) ⋐ Ω, and Ricg > −1/(100nr2) in Bg(x, r),
(2) the distance function p = d(·, x)2 is smooth and satisfies ∇2

gp < 3g in Bg(x, r).
When there is no ambiguity, we write σ(x; Ω) and omit the dependence on g.

The remainder of this subsection is aimed at reviewing the basics of elliptic regulariza-
tion, and recalling some analytic byproducts obtained while proving Theorem 2.4.1. The
contents below will only be used in Section 3.6; the reader may skip them temporarily.

The most important geometric feature of (2.4.1) is the following: if uε is a solution of
(2.4.1) in a domain Ω, then the function

Uε(x, z) = uε(x)− εz

is a smooth solution of IMCF in Ω× R. This can be directly verified. Noticing that the
family of hypersurfaces

Σε
t = graph

(
ε−1
(
uε(x)− t

))
are level sets of Uε, it follows that they form a downward translating soliton of IMCF.

Immediate from this observation, estimates for the smooth IMCF may be applied to
solutions of the ε-regularized equation. A particular case is the interior mean curvature
estimate (or gradient estimate, since H = |∇u| in IMCF):

Theorem 2.4.3 (general smooth gradient estimate, [53, (3.6)]).
Let {Σt}a⩽t⩽b be a family of smooth hypersurfaces that solve the IMCF in Ω. Denote

by Ht the mean curature of Σt. Suppose x ∈ Σt and r < σ(x; Ω, g). Define the maximal
mean curvature on the parabolic boundary:

Hr = max
{

sup
Σa∩B(x,r)

Ha, sup
s∈[a,t]

(
sup

∂Σs∩B(x,r)

Hs

)}
Then we have

Ht(x) ⩽ max
{
Hr,

C(n)

r

}
. (2.4.3)

Or we can state the result as follows:

Corollary 2.4.4. Let u ∈ C∞(Ω) solves the smooth IMCF div
( ∇u
|∇u|

)
= ∇u in Ω, with

|∇u| nonvanishing. Then

|∇u|(x) ⩽
C(n)

σ(x; Ω, g)
, ∀x ∈ Ω. (2.4.4)

In particular, when Ω ⋐M , we have |∇u|(x) ⩽ C(Ω) · d(x, ∂Ω)−1.

Remark 2.4.5. Modifying the argument in [53, p.382], we can show the finer estimate

|∇u|(x) ⩽
C(n)

r
min

{
1,
√

oscB(x,r)(u)
}
, ∀ r < σ(x; Ω, g). (2.4.5)
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The proof is as follows. Recall the evolution of mean curvature

∂H

∂t
= −∆Σ

1

H
−
(
|A|2 + Ric(ν, ν)

) 1

H
.

Setting ψ = 1/H, this implies

∂tψ = ψ2
[
∆Σψ + |A|2ψ + Ric(ν, ν)ψ

]
⩾ ψ2∆Σψ −

ψ3

r2
. (2.4.6)

Here, recall that Ric ⩾ −r−2g in B(x, r). Shifting u by a constant, we may assume that
infB(x,r)(u) > 0. Denoting d = d(·, x), and for some constant c > 0 to be chosen later, we
consider the quantity

F =
c

r

r2 − d2

t1/2
.

Here we are implicitly switching between the hypersurface and level set forms of the flow
(so the time t is actually the same as u). We calculate

∂tF = − c

2r

r2 − d2

t3/2
− c

r

2d⟨ν,∇d⟩
t1/2

ψ ⩽ −F
2t

+
2c

t1/2
ψ, (2.4.7)

and

∆ΣF = − c

rt1/2
∆Σd

2 = − c

rt1/2
[

trΣ∇2d2 −H⟨ν,∇d2⟩
]

> − c

rt1/2
[
6n− 2ψ−1d⟨ν,∇d⟩

]
> − 6nc

rt1/2
− 2c

t1/2ψ
.

(2.4.8)

To prove (2.4.5), it suffices to assume oscB(x,r)(u) ⩽ 1 and prove that ψ(x) > F (x). Once
this holds, it implies H(x) ⩽ t1/2/cr, hence implies (2.4.5) joint with Corollary 2.4.4.

Suppose that our claim is false. Then there is an exceptional point with the smallest
time. So there exists 0 < t ⩽ 1 and y ∈ Σt ∩B(x, r), such that

ψ(y) = F (y), ∆Σψ(y) ⩾ ∆ΣF (y), ∂tψ(y) ⩽ ∂tF (y).

Using (2.4.6)∼ (2.4.8) to cancel all the time derivatives and Laplacians, we obtain that
at y:

− 6nc

rt1/2
ψ2 − 2c

t1/2
ψ − ψ3

r2
⩽ −ψ

2t
+

2c

t1/2
ψ.

Canceling a common ψ and using ψ = F ⩽ cr
t1/2

to get rid of the extra ones, this implies

−6nc2

t
− 2c

t1/2
− c2

t
⩽ − 1

2t
+

2c

t1/2
.

Since t−1/2 ⩽ t−1, this implies

−6nc2 − 2c− c2 ⩽ −1/2 + 2c.

Setting c = 1/100n, we have the desired contradiction.

Now we return to elliptic regularization, and consider solving the regularized equation.
We assume the following setups: M is complete, connected, noncompact, and E0 ⋐M is
a C1,1 domain. Moreover, v satisfies conditions (1)(2) in Theorem 2.4.1 and additionally

∇v ̸= 0 everywhere in {v ⩾ 0}.
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So this makes our setup more restrictive than in Theorem 2.4.1.
For each ε > 0 and L > 2, consider the region FL = {v < L} (which is smooth and

precompact by our assumptions), and the boundary value problem
div
( ∇uε,L√

ε2 + |∇uε,L|2
)

=
√
ε2 + |∇uε,L|2 on FL \ E0,

uε,L = 0 on ∂E0,

uε,L = L− 2 on ∂FL.

(2.4.9)

(2.4.10)

(2.4.11)

The following existence theorem comes from [53, Lemma 3.4] and [53, Lemma 3.5]:

Theorem 2.4.6 (approximate existence).
Let M be complete, and E0 ⋐ M be a C1,1 domain. Suppose v ∈ C∞(M) is proper,

such that {v < 0} ⋑ E0, and v is a subsolution of IMCF((({v > 0}))) with nonvanishing
gradient therein. Then for each L > 2 there is a small ε(L) > 0 such that (2.4.9)∼ (2.4.11)
admits a smooth solution uε,L for all 0 < ε ⩽ ε(L). Moreover, we have the lower bound{

uε,L ⩾ −ε in FL \ E0,

uε,L ⩾ v − 2 in FL \ {v < 0},
(2.4.12)

and the gradient estimate∣∣∇uε,L(x)
∣∣ ⩽ max

{
sup

B(x,r)∩∂E0

H+, sup
B(x,r)∩∂FL

|∇uε,L|
}

+ 2ε+
C(n)

r
(2.4.13)

for all x ∈ FL \ E0 and 0 < r ⩽ σ(x;M, g), where σ(x;M, g) is as in Definition 2.4.2,
and H+ = max{H∂E0 , 0} is the positive part of boundary mean curvature.

See [53] for the proof. Let us briefly remark on the estimates (2.4.12) and (2.4.13):
the interior estimate follows by applying Theorem 2.4.3 in (FL \E0)×R. The C0 bound
(2.4.12) and the boundary gradient estimate sup∂E0

|∇u| ⩽ sup∂E0
H+ comes from the use

of appropriate barrier functions. Specifically, we have:
(i) For some constant C = C(L)≫ 1, the function

v1 =
ε

C

(
e−Cd(·,∂E0) − 1

)
is a viscosity subsolution of (2.4.9) in FL \E0. Note that −ε ⩽ v ⩽ 0 in Fl \E0 and
|∇v| = ε at ∂E0.

(ii) When ε is sufficiently small (depending on L), the function

v2 =
L− 1

L
v − 1

is a strict subsolution of (2.4.9) in Fl \ {v < 0}.
(iii) Choose any function f with f |∂E0 = 0 and H+ < fν ⩽ H+ + ε on ∂E0. Then

w1 =
f

1− f/δ

is a strict supersolution of (2.4.9) in {w1 <∞} \ E0, for some δ ≪ ε.
(iv) The constant function w2 ≡ L− 2 is trivially a supersolution of (2.4.9).
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M

R

∂E0
v1

v2
w1

w2

uε,L

Figure 2.4: Barrier functions in elliptic regularization.

Thus uε,L is bounded by these four functions; see Figure 2.4 below.

We next consider the convergence as ε → 0. The next theorem states that the limit
of a sequence of εi-regularized solutions is an actual solution of IMCF(((Ω))). It is similar to
[53, Theorem 3.1], and is proved in a broader generality for later use.

Theorem 2.4.7 (convergence to calibrated solutions). Let Ω ⊂ M be a domain, and g
be a fixed smooth Riemannian metric on Ω. Given the following data:

(1) Ωi is a sequence of domains that converge locally uniformly to Ω,
(2) gi are smooth metrics on Ωi, which converge locally smoothly to g,
(3) {εi > 0} is a sequence with εi ↘ 0, and ui ∈ C∞(Ωi) are solutions of the equations

divgi

( ∇giui√
ε2i + |∇giui|2gi

)
=
√
ε2i + |∇giui|2gi .

Then a subsequence of ui converges in C
0
loc(Ω) to a function u ∈ Liploc(Ω), which solves

IMCF(((Ω, g))). We have the gradient estimate

|∇gu(x)| ⩽ C(n)

σ(x; Ω, g)
, ∀x ∈ Ω. (2.4.14)

Moreover, on Ω and Ω× R respectively, the vector fields

νi =
∇giui(

ε2i + |∇giui|2gi
)1/2 and νi =

∇giui − εi∂z(
ε2i + |∇giui|2gi

)1/2
converge to some ν,ν in the weak topology of L1

loc(Ω) resp. L1
loc(Ω×R), such that ν is the

projection of ν on the Ω factor, and ν calibrates u in the sense of Definition 2.3.1.

The proof is technical, so we postpone it to the end of this section. Note that we have
two convergences:

ui
C0

loc(Ω)
−−−−→ u, Ui(x, z) := ui(x)− εiz

C0
loc(Ω×R)
−−−−−−→ u(x) =: U(x, z).

The convergence of level sets is also interesting. Since Ui is a smooth solution of IMCF,
its sub-level set is almost perimeter-minimizing (see (2.1.5)∼Lemma 2.1.7). Thus, for
each t we may take a limit (up to subsequence) as ε→ 0:

Et(Ui) =
{
z > ε−1

i (ui − t)
} L1

loc(Ω×R)
−−−−−−→ Et.
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Note the following general fact: if fi → f in C0
loc, and Et(fi) → E in L1

loc, then Et(f) ⊂
E ⊂ E+

t (f) up to zero measure. Applying this to our case, we obtain

Et(u)× R ⊂ Et ⊂ E+
t (u)× R up to zero measure.

So for all but finitely many t, we are forced to have Et = Et(u)× R = E+
t (u)× R.

For those jump times t (i.e. E+
t \ Et has positive measure), the limit set Et lies

between Et × R and E+
t × R, and may be different from both of them. Moreover, recall

from Theorem 2.1.13 that Et is a local minimizer of JU in Ω×R. And since U is constant
in
(
E+
t (u) \ Et(u)

)
× R, we obtain that Et is a local perimeter minimizer there (hence

∂Et is a minimal surface there).
In summary, we obtain the following picture: the collection of level sets {Et(Ui)}

converges to vertical slices Et(u)× R for all but countably many t, while it can converge
to a non-vertical slice that is minimal in between Et(u)× R and E+

t (u)× R.
For those exceptional times, the limit may depend on the subsequence that we choose.

Moreover, by considering all the possible limits of the form

lim
i→∞

Eti(Ui), ti is a sequence with ti → t,

we should obtain a minimal foliation of (E+
t \Et)×R. This foliation is further calibrated

by the limit vector field ν in Theorem 2.4.7. See Figure 2.5 for a depiction. Note a detail:
a minimal leaf in (E+

t \Et)×R may touch ∂Et×R, but it never touches (∂E+
t \∂Et)×R,

by the strong maximum principle.

M

R minimal surfaces︷ ︸︸ ︷ ∂Et×R︷ ︸︸ ︷

∂E+
T∂ET

∂E+
T

∂ET

u≡T︷ ︸︸ ︷ 1/H-flow︷ ︸︸ ︷
M

Figure 2.5: A weak flow with jump, and the limit foliation in M × R.

Finally, under our settings made above, we have convergence to a proper solution:

Theorem 2.4.8 (convergence to proper solution). Assume the same conditions onM,E0, v
as in Theorem 2.4.6. Given two sequences Li → ∞, εi → 0 with εi ⩽ ε(Li). Then up
to a subsequence, there are solutions ui = uεi,Li of (2.4.9)∼ (2.4.11) that converges in
C0

loc(M \ E0) to the unique proper solution of IVP(((M ;E0))).
Therefore, IVP(((M ;E0))) admits a solution if we assume the conditions on M,E0, v in

Theorem 2.4.6.

Proof. The solutions ui are given directly by Theorem 2.4.6. We first use Theorem 2.4.7
to obtain a convergence ui → u in C0

loc(M \ E0), so that u solves IMCF(((M \ E0))). Then
we notice from (2.4.13) that the gradient estimate of ui is up to ∂E0. Taking a further
subsequence, we may assume that ui → u in C0

loc(M \ E0). It follows immediately that
u|∂E0 = 0. The bound (2.4.12) implies that u ⩾ max{0, v− 2}. Combining with Theorem
2.4.7, it follows that u is a proper solution of IVP(((M ;E0))). Finally, the uniqueness of u
follows from the maximum principle (Theorem 2.1.12).
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Proof of Theorem 2.4.7.
On Ωi × R with the product metric gi + dz2, the functions Ui(x, z) = ui(x) − εiz

are smooth solutions of the IMCF. By Theorem 2.4.3 and Definition 2.4.2 we have the
estimate

|∇giui(x)| ⩽ |∇gi+dz2Ui(x, 0)| ⩽ C(n+ 1)

σ
(
(x, 0); Ωi × R, gi + dz2

) ⩽
C(n+ 1)

σ(x; Ωi, gi)
. (2.4.15)

By condition (2) of the theorem, for all K ⋐ Ω× R there exists i0 such that

inf
x∈K

inf
i⩾i0

σ(x; Ωi × R, gi + dz2) > 0.

By the Arzela-Ascoli theorem, there is a subsequence such that ui → u locally uniformly
for some u ∈ Liploc(Ω). Set U(x, z) := u(x), which is clearly the C0

loc limit of Ui(x, z).
Note that σ(x; Ω, g) ⩽ 2σ(x; Ωi, gi) for sufficiently large i. Thus (2.4.15) passes to the
limit and give

|∇gu(x)| ⩽ C ′(n)

σ(x; Ω, g)
.

Since Ui are smooth solutions, they are calibrated by the vector fields

νi :=
∇gi+dz2Ui
|∇gi+dz2Ui|

=
∇giui − εi∂z(

ε2i + |∇giui|2gi
)1/2 .

By the Dunford-Pettis theorem and a diagonal argument, there is a subsequence such
that νi converges to some ν weakly in L1

loc(Ω × R). Now all the conditions of Theorem
2.3.3 are met, and it follows that U solves IMCF(((Ω× R; g + dz2))) and is calibrated by ν.

Note that νi are invariant under vertical translation, and this property passes to the
limit ν. Let ν be the projection of ν on the Ω factor. It is easily seen that ν is the L1

loc

weak limit of νi.
Finally, we show that u is a weak solution in Ω calibrated by ν. Indeed, we have

|ν| ⩽ |ν| ⩽ 1 and ∇u(x) · ν(x) = ∇U(x, 0) · ν(x, 0) = |∇U(x, 0)| = |∇u(x)| almost
everywhere. To verify the condition (2.3.1), we fix a cutoff function η ∈ C∞(R) with
η|(−∞,−1] ≡ 0 and η|[0,∞) ≡ 1. For R > 0 we set ρR(z) = η(z)η(R − z). Now for a fixed
ϕ ∈ Liploc(Ω), we test the calibration property of U with the function ϕ(x)ρR(z) and find

0 =

∫
Ω×R

(
∇xϕ(x)ρR(z) + ϕ(x)ρ′R(z)∂z

)
· ν + ϕ(x)ρR(z)|∇xu(x)| dx dz

= R

∫
Ω

∇ϕ · ν + ϕ|∇u|

+

∫
Ω×([−1,0]×[R,R+1])

(
∇xϕ(x)ρR(z) + ϕ(x)ρ′R(z)∂z

)
· ν + ϕ(x)ρR(z)|∇xu(x)| dx dz.

Taking R→∞, we have 0 =
∫
Ω
∇ϕ · ν + ϕ|∇u|. This verifies that ν calibrates u.

2.5 Isoperimetry and properness

Definition 2.5.1. For a Riemannian manifold (M, g), define its isoperimetric profile by

ip(v) = inf
{
P (E) : E ⋐M has finite perimeter, |E| = v

}
.
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Then define its formal inverse by

sip−1(a) = sup
{
|E| : E ⋐M,P (E) ⩽ a

}
.

Note that sip−1(a) <∞ when a < lim infv→∞ ip(v).

The main result of this section is the following:

Theorem 2.5.2. Given a constant A > 0. Let M be a connected, complete, non-compact
Riemannian manifold with infinite volume, such that

lim inf
v→∞

ip(v) > A (2.5.1)

and ∫ v0

0

dv

ip(v)
<∞ for some v0 > 0. (2.5.2)

Then for any C1,1 domain E0 ⋐ M with P (E0) < A, there exists a solution u of
IVP(((M ;E0))), such that Et ⋐ M for all 0 ⩽ t ⩽ log

(
A/P (E0)

)
. If E0 ⊂ B(x0, r0) for a

radius r0, then we have Et ⊂ B(x0, R), where

R = r0 + (2 + et)

∫ sip−1(etP (E0))

0

dv

ip(v)
<∞. (2.5.3)

Moreover, we have the local gradient estimate

|∇u|(x) ⩽ sup
B(x,r)

H+ + C(n)r−1, ∀x ∈M \ E0, r ⩽ σ(x;M), (2.5.4)

where as usual, H+ denotes the positive part of the mean curvature of E0.

Let us first note that this implies our main Theorem A.

Proof of Theorem A assuming Theorem 2.5.2.
Assume the conditions of Theorem A. For each l ∈ N+, we apply Theorem 2.5.2 with

the choice A = elP (E0). We obtain a sequence of weak solutions ul with initial condition
E0, such that El(u

l) ⋐ M , and the quantitative diameter bound (2.5.3) holds for ul

whenever t ⩽ l. By Theorem 2.1.12(iii) (maximum principle), for two integers l < l′ we
have ul = ul

′
on El(u

l). Therefore, the function

u(x) = lim
l→∞

ul(x)

is defined on
⋃
l∈NEl(u

l) (which is M , by (2.5.4)). For each t > 0 we have Et(u) = Et(u
⌈t⌉),

hence (2.5.3) holds for u as well. In particular, u is proper. Finally, by (2.5.4), and
Theorem 2.1.13 (compactness, applied in M \ E0), and Definition 2.1.8, it follows that u
is a solution of IVP(((M ;E0))).

The proof of Theorem 2.5.2 consists of two components: a diameter estimate and
a procedure to produce solutions. To show the ideas involved, let us first prove a re-
sult regarding the existence of precompact minimizing hulls. We refer the reader to the
introduction, as well as Section A.4, for the notion of minimizing hull.
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Theorem 2.5.3 (existence of precompact minimizing hull).
Assume that M is complete, connected, with infinite volume, and satisfies

lim inf
v→∞

ip(v) > A and

∫ v0

0

dv

ip(v)
<∞ for some v0 > 0. (2.5.5)

Then any Q ⋐M with P (Q) ⩽ A admits a precompact minimizing hull E in the sense of
Definition A.4.5. Moreover, if Q ⊂ B(x0, r), then E ⊂ B(x0, R), where

R = r + 2

∫ sip−1(P (Q))

0

dv

ip(v)
<∞. (2.5.6)

We first prove a diameter estimate. In Lemma 2.5.4 below, one can view E as the
imagined minimizing hull in Theorem 2.5.3.

Lemma 2.5.4. Let M,A be as in Theorem 2.5.3. Suppose r > 0, and E ⋐M satisfies
(i) P (E) ⩽ A,
(ii) for all F with E ∩B(x0, r) ⊂ F ⊂ E, it holds P (E) ⩽ P (F ),

then E ⊂ B(x0, R) up to zero measure, where

R = r + 2

∫ sip−1(P (E))

0

dv

ip(v)
<∞. (2.5.7)

Proof. The condition (2.5.5) implies that sip−1(P (E)) ⩽ sip−1(A) <∞. Moreover, Corol-
lary A.3.3 implies that ip(v) > 0 for all v > 0. Hence R <∞.

Suppose by contradiction that
∣∣E \B(x0, R)

∣∣ > 0. With a change of measure zero, we

may assume E = E(1). For almost every ρ ∈ [r, R], we may define (see Remark A.6.2)

V (ρ) =
∣∣E \B(x0, ρ)

∣∣, S(ρ) = P
(
B(x0, ρ);E

)
, A(ρ) = P

(
E;M \B(x0, ρ)

)
.

Moreover, for almost every ρ, we have Hn−1
(
∂∗E ∩ ∂B(x0, ρ)

)
= 0.

∂E ∂B(x0, ρ)

V (ρ)
→S(ρ)

→

A(ρ)

Figure 2.6: Perimeter comparison

By the coarea formula, V (ρ) is absolutely continuous and satisfy

V ′(ρ) = −S(ρ) for a.e. ρ. (2.5.8)

By the cancellation inequality (A.1.14) and the minimization of E, we have

P (E) ⩽ P
(
E ∩B(x0, ρ)

)
⇒ A(ρ) ⩽ S(ρ). (2.5.9)

By the decomposition identity (A.1.12), we have

S(ρ) + A(ρ) = P
(
E \B(x0, ρ)

)
⩾ ip(V (ρ)). (2.5.10)
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Combining (2.5.8) (2.5.9) (2.5.10) we thus obtain

V ′(ρ) ⩽ −1

2
ip(V (ρ)) for a.e. ρ.

Since V (R) > 0, we can integrate this inequality to obtain

2

∫ V (r)

V (R)

dv

ip(v)
> R− r.

On the other hand, we have V (r) ⩽ |E| ⩽ sip−1(P (E)). This contradicts (2.5.7).

Note that Lemma 2.5.4 is an a priori estimate, in the sense that it assumes the existence
of the object E. To prove Theorem 2.5.3, we still need to actually find the set E. The
case of minimizing hulls is simpler, and the following argument achieves our goal.

Proof of Theorem 2.5.3. Suppose Q ⊂ B(x0, r). Denote

A′ = inf
{
P (E) : Q ⊂ E ⊂ B(x0, R + 1)

}
. (2.5.11)

By the compactness theorem and lower semi-continuity of perimeter, the least perimeter
problem for A′ always have a solution: there is a set E with Q ⊂ E ⊂ B(x0, R+ 1), such
that P (E) = A′. Then we consider the maximal volume solution: set

V = sup
{
|F | : Q ⊂ F ⊂ B(x0, R + 1), P (F ) = A′}.

By compactness theorem and lower semi-continuity again, there is a set F0 with E ⊂ F0 ⊂
B(x0, R + 1), such that P (F0) = A′ and |F0| = V . Note that F0 satisfies the condition
in Lemma 2.5.4, since F0 solves the area minimization problem (2.5.11). From this we
conclude that F0 ⊂ B(x0, R).

We claim that F0 is the minimizing hull of E in M , in the sense of Definition
A.4.3. Suppose this is not true, so there is another precompact set F1 ⊃ Q, with either
P (F1) < P (F0) or |F1| > |F0|. Let R1 ≫ R be such that F1 ⊂ B(x0, R1). Repeating the
argument above, there exists a maximal volume solution F2 to the least area problem with
inner obstacle Q and outer obstacle B(x0, R1+1). As F1 is a valid competitor in this min-
imization problem, we obtain that either P (F2) < P (F1) < P (F0) or |F2| > |F1| > |F0|.
On the other hand, by Lemma 2.5.4 one more time we have F2 ⊂ B(x0, R), so we obtain
a contradiction with the minimizing property of F0.

2.5.1 Proof of the main properness theorem

The following lemma is our a priori diameter estimate for IMCF. In the lemma, we
denote

ipΩ(v) = inf
{
P (E) : E ⋐ Ω, |E| = v

}
, sip−1

Ω (a) = sup
{
|E| : E ⋐ Ω, P (E) ⩽ a

}
.

Note that ip(v) = ipM(v), and ipΩ(v) ⩾ ip(v), sip−1
Ω (a) ⩽ sip−1(a) for all Ω ⊂M .

Lemma 2.5.5. Let E0 ⋐ Ω be a C1,1 domain, and E0 ⊂ B(x0, r0) for some x0 ∈ E0,
r0 > 0. Let u solve IVP(((Ω;E0))), and suppose Et ⋐ Ω for some t > 0. Then we have
Et ⊂ B(x0, R), where

R = r0 + (1 + et)

∫ sip−1
Ω (etP (E0))

0

dv

ipΩ(v)
.
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Proof. Suppose this is not true. Recall by Lemma 2.1.6 that Et = E
(1)
t . Similar to the

proof of Lemma 2.5.4, for almost every ρ ∈ [r0, R] we define

V (ρ) =
∣∣Et \B(x0, ρ)

∣∣, S(ρ) = P
(
B(x0, ρ), Et

)
, A(ρ) = P

(
Et,Ω \B(x0, ρ)

)
.

Choose a domain K with Et ⋐ K ⋐ Ω. Applying Lemma 2.2.1 with the choice F =
K \B(x0, ρ), we have

P (Et) ⩽ P
(
Et \B(x0, ρ)

)
+ (et − 1)S(ρ).

Then by the cancellation inequality (A.1.14), we have

A(ρ) ⩽ etS(ρ) for a.e. ρ ⩾ r0.

By the isoperimetric inequality, we have

A(ρ) + S(ρ) ⩾ ipΩ(V (ρ)) for a.e. ρ ⩾ r0.

Finally, the coarea formula gives

V ′(ρ) = −S(ρ) for a.e. ρ ⩾ r0.

Combining them together, we obtain

V ′(ρ) ⩽ − ipΩ(V (ρ))

1 + et
for a.e. ρ ⩾ r0. (2.5.12)

By our hypothesis, we have V (R) > 0. Thus we can integrate (2.5.12) to obtain

R− r0
1 + et

⩽
∫ V (r0)

0

dv

ipΩ(v)
.

Then, note that V (r0) ⩽ |Et| ⩽ sip−1
Ω (P (Et)) ⩽ sip−1

Ω (etP (E0)). This contradicts our
choice of R, thus proves the lemma.

Having the a priori diameter estimate, the next step is to actually construct the weak
solution. The main issue is that we have no existence theorem at hand except for Theorem
2.4.1. To resolve this issue, we employ a conic cutoff method, inspired by similar argument
in [53, Theorem 3.1]. The idea is to truncate the manifold and attach a metric cone. Then
Theorem 2.4.1 provides a proper weak solution on each modified manifold. Then we let
the locus of truncation diverge to infinity, and expect to obtain the desired weak IMCF
on M as a limit. Below are the details of this argument.

Assume the setups of Theorem 2.5.2. Fix a basepoint x0 ∈ E0. For simplicity, we
denote B(r) = B(x0, r) for r ∈ R. For each integer k ∈ N, k > r0, let Wk be a connected
smooth domain with B(k+ 1

4
) ⊂ Wk ⊂ B(k+ 1

2
). For each k, we construct a new manifold

Mk by smoothly attaching a metric cone ∂Wk × [0,∞) to Wk. The detailed construction
is as follows. Choose 0 < δ ⩽ 1

8
such that 2δ is smaller than the normal injectivity

radius of ∂Wk. The choice of δ depends on k, which we make implicit for brevity. Let
η : [0,∞) → [0,∞) be a smooth cutoff function such that η|[0,1/2] ≡ 1 and η|[3/4,∞) ≡ 0.
Let g = dr2 +h(r, x) (0 ⩽ r ⩽ δ) be the metric expression in the δ-collar neighborhood of
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Wk (the positive r-direction pointing outward), induced by the normal exponential map.
Thus h(0, x) = g|∂Wk

. Consider the new tensor

h′(r, x) = (1 + e−1/r) η(
r

δ
)h(r, x) + C

(
1− η(

r

δ
)
) (r
δ

)2
h(δ, x).

By choosing the constant C sufficiently large, h′ satisfies the properties(1) h′(r, x) > h(r, x) for all 0 < r ⩽ δ.

(2) h′(r, x) =
(r
δ

)2
h′(δ, x) for all r ⩾ δ.

(2.5.13)

where h′(r, x) > h(r, x) means that
(
h′ij(r, x)− hij(r, x)

)
dxidxj is positive-definite (where

1 ⩽ i, j ⩽ n − 1). Let Mk = Wk ∪
(
∂Wk × [0,∞)

)
, endowed with the metric gk that

coincides with g on Wk and equals to dr2 +h′(r, x) on ∂Wk× [0,∞). Thus gk is a smooth
metric on Mk. There is a smooth map

Φ : Wk ∪
(
∂Wk × [0, δ)

)
→M, (2.5.14)

composed of the identity map on Wk and the normal exponential map on ∂Wk × [0, δ).
By item (1) in (2.5.13), Φ is 1-Lipschitz (with the source metric gk and target metric g),
and Φ|∂Wk×(0,δ) strictly decreases the area of any hypersurface in ∂Wk × (0, δ).

→

∂B(k)

→

∂B(k + 1)

︷ ︸︸ ︷Wk ︷ ︸︸ ︷Wk

∂Wk × [0,∞)

Figure 2.7: conic cutoff (left side: M , right side: Mk)

Note that (n−1) log(r/δ) is a smooth solution to the IMCF onMk with initial condition
Wk ∪

(
∂Wk× [0, δ)

)
. By Theorem 2.4.1, there is a proper solution uk of IVP(((Mk;E0))). Set

T := log
(
A/P (E0)

)
, (2.5.15)

which is the expected maximal proper time in Theorem 2.5.2. Through a chain of lemmas
below, we will show that min

(
uk, T

)
is the desired weak solution for sufficiently large k.

For each k ∈ N, k > r0, define the first escaping time of uk as follows:

Tk = sup
{
t ⩾ 0 : Et(uk) ⊂ B(k)

}
. (2.5.16)

Clearly the supremum in (2.5.16) is achieved, so ETk(uk) ⊂ B(k).
Note the notational subtlety here. The precise statement for “Et(uk) ⊂ B(k)” is

“Et(uk) ⊂ Wk and its identical image in M is contained in B(k)”. For brevity of state-
ments, we keep the simplified notation for the rest of the proof. If a set E ⊂ Mk is
actually contained in Wk, then clearly P (E)g = P (E)gk . Here we use P (·)g to denote the
perimeter with respect to a metric g.

The following lemma controls the jumping behavior of uk, and is where the properties
(2.5.13) of Mk are used. The nice behavior of uk depends on the particular construction
of Mk. For instance, if one creates a thin neck when attaching the exterior part to Wk,
then uk will quickly jump to the thin neck and ignore the geometry inside Wk.
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Lemma 2.5.6. Given r > 0 and 0 ⩽ t ⩽ T , set

R = r + 2

∫ sip−1(etP (E0))

0

dv

ip(v)
. (2.5.17)

Then R < ∞ under the main conditions (2.5.1) (2.5.2). For all k > R the following
statement holds: if Et(uk) ⊂ B(r), then E+

t (uk) ⊂ B(R).

Proof. The finiteness of R follows from (2.5.1) and Corollary A.3.3.
Note that if it holds E+

t (uk) ⊂ Wk, then the result follows immediately from Lemma
2.5.4. So it remains to show that E+

t (uk) ⊂ Wk. Note that ∂E+
t (uk) \ ∂Et(uk) is a

gk-minimal surface (rigorously speaking, the support of a gk-stationary integral varifold)
in Mk, by Lemma 2.1.10(i), Definition A.4.3 and Theorem A.4.5. Observe on the other
hand that ∂Wk × [δ,∞) is foliated by strictly convex hypersurfaces, hence E+

t (uk) ⊂
Wk ∪

(
∂Wk × (0, δ)

)
by a strong maximum principle of Solomon-White [110, Theorem

4]. Suppose that E+
t (uk) has nonempty intersection with ∂Wk × (0, δ). Then the map

Φ defined in (2.5.14) strictly decreases the area of E+
t (uk). Denote F1 = Φ(E+

t (uk)), we
have by Lemma 2.1.10(ii)

P
(
Et(uk)

)
g

= P
(
Et(uk)

)
gk

⩾ P
(
E+
t (uk)

)
gk
> P (F1)g.

By the construction of Wk, we have F1 ⊂ B(k + 1). Now let F2 be any minimizer of the
following double obstacle problem:

P (F2)g = inf
{
P (F )g : Et(uk) ⊂ F ⊂ B(k + 1)

}
.

Therefore P (F2)g ⩽ P (F1)g < P
(
E+
t (uk)

)
gk

. In particular, P (F2)g ⩽ etP (E0)g ⩽ A.

Applying Lemma 2.5.4, we obtain F2 ⊂ B(R).
In particular, F2 is a valid perimeter competitor for E+

t (uk). This implies that E+
t (uk)

does not solve the least area problem outside Et(uk) in Mk, which contradicts Lemma
2.1.10(i) and Theorem A.4.5. Hence E+

t (uk) ⊂ Wk.

Corollary 2.5.7. There is k0 ∈ N such that Tk > 0 for all k ⩾ k0.

Proof. Apply Lemma 2.5.6 with t = 0, r = r0. For each k we have E+
0 (uk) ⊂ B(R) for

all k > R, where R is given by (2.5.17). By Lemma 2.1.7(ii) we have Eε(uk) ⊂ B(R + 1)
for some small ε > 0. This proves the lemma with k0 = ⌊R⌋+ 2.

For i = 1, 2, define

Ri(t) = r0 + (2i+ et)

∫ sip−1(et|∂E0|)

0

dv

ip(v)
. (2.5.18)

Thus Ri is finite when t ⩽ T , under the conditions (2.5.1) (2.5.2).

Lemma 2.5.8. We have Et(uk) ⊂ B(R1(t)) for all k ⩾ k0 and all 0 < t ⩽ min{Tk, T}.

Proof. Note that Et(uk) ⊂ B(k) whenever t ⩽ Tk. Hence we can apply Lemma 2.5.5 inside
Ω = B(k+1/8). The result follows by noting that ipΩ(v) ⩾ ip(v), sip−1

Ω (a) ⩽ sip−1(a).

Lemma 2.5.9. There exists k1 ∈ N such that Tk ⩾ T for all k ⩾ k1. Furthermore,
ET (uk) is outward minimizing in M for all k ⩾ k1.
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Proof. Choose k1 > R2(T ) (in particular, k1 > k0). Suppose that k ∈ N satisfies Tk < T .
We will show that k < k1, which proves the first statement. Applying Lemma 2.5.8, we
obtain ETk(uk) ⊂ B(R1(Tk)). If further R2(Tk) < k, then Lemma 2.5.6 applies to yield
E+
Tk

(uk) ⊂ B(R2(Tk) − 1). Therefore ETk+ε(uk) ⊂ B(R2(Tk)) ⊂ B(k) for some small
ε > 0, by Lemma 2.1.7(ii). This contradicts the maximality of Tk, hence R2(Tk) ⩾ k. We
have

k ⩽ R2(Tk) < R2(T ) < k1,

and the first statement follows.
For each k ⩾ k1, Lemma 2.5.8 implies ET (uk) ⊂ B(R1(T )). By Theorem 2.5.3, ET (uk)

admits a strictly outward minimizing hull that is contained in B(R2(T ) − 1). Thus we
note that: if ET (uk) is outward minimizing in B(R2(T )−1), then it is outward minimizing
in M . The former must hold, since u is a weak solution in B(R2(T )) ⊂ B(k). This proves
the second statement.

Proof of Theorem 2.5.2.
Given all the settings described above, we choose k1 as in Lemma 2.5.9 and consider

the function

u(x) =

{
min(uk1(x), T ) (x ∈ B(k1)),

T (x /∈ B(k1)).

Since ET (uk1) ⊂ B(R1(T )) ⋐ B(k1) by Lemma 2.5.8, u is a continuous function. The
quantitative bound (2.5.3) for 0 ⩽ t ⩽ T is inherited from Lemma 2.5.8. The gradient esti-
mate (2.5.4) comes from Theorem 2.4.1. It remains to show that u solves IMCF(((M \ E0))).

1

Given 0 < t ⩽ T and a competitor set E such that E∆Et(u) ⊂ K ⋐ M \ E0. By the
outward minimizing property in Lemma 2.5.9, we have

JKu (E ∪ ET (u)) ⩾ JKu (ET (u)).

Hence

JKu (E) ⩾ JKu (E ∩ ET (u)) + JKu (E ∪ ET (u))− JKu (ET (u)) ⩾ JKu (E ∩ ET (u)).

Since u is a weak solution in B(k1), we have

JKu (E ∩ ET (u)) ⩾ JKu (Et(u)).

It follows that JKu (E) ⩾ JKu (Et(u)), hence u is a weak solution.

2.5.2 On Huisken-Ilmanen’s existence theorem

For the reader’s convenience, we include a proof of Theorem 2.4.1. We refer to Section
2.4 for the context. Recall from Theorem 2.4.8 that we already proved the case where v
is smooth with nonvanishing gradient in {v ⩾ 0}. Using the conic cutoff trick, we can
now prove the full case of Theorem 2.4.1. Assume the conditions there: we are given a
proper function v ∈ Liploc(M) which is a subsolution of IMCF((({v > 0}))).

For each k > 0, let Wk be a connected smooth domain such that {v < k} ⋐ Wk. Then
we perform the conic cutoff construction, see above Figure 2.7, to obtain a new manifold
Mk = Wk ∪

(
∂Wk × [0,∞]

)
. Let r be the radial factor on ∂Wk × [0,∞). As we have

1This does not follow directly from Remark 2.1.4(iv), since the ambient manifold has changed.
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noticed near Figure 2.7, the function (n − 1) log(r/δ) is a smooth proper IMCF on Mk.
This function fulfills the conditions of Theorem 2.4.8, so we get a proper solution uk of
IVP(((Mk;E0))). On the other hand, the function

vk =

{
min{v, k} in Wk

k in ∂Wk × [0,∞)

is a subsolution of IVP(((Mk;E0))). This can be verified by noticing that Ek(vk) is outward
minimizing in Mk. By the standard maximum principle, we have uk ⩾ vk.

Finally, letting k → ∞, the standard compactness argument yields a solution u of
IVP(((M ;E0))). Passing uk ⩾ vk to the limit, we have u ⩾ v hence u is proper. The gradient
estimate comes from passing (2.4.13) to the limit. This proves Theorem 2.4.1.

2.6 Euclidean growth estimate

The aim of this section is to prove our main Theorem B. Recall that we assume an
Euclidean isoperimetric inequality

P (E) ⩾ cI |E|
n−1
n , ∀ E ⋐M. (2.6.1)

To prove Theorem B, we first show that for any x0 ∈ M , there exists an IMCF that
“starts from the point x0”, and satisfies the growth estimate u ⩾ (n− 1) log d(·, x0)− C.
Following G. Huisken, we call such a solution an IMCF core.

Definition 2.6.1. Given a point x0 ∈M and a function u : M \ {x0} → R. We say that
u is an IMCF core with pole x0, if the following conditions hold:

(1) u ∈ Liploc

(
M \ {x0}

)
, and limx→x0 u(x) = −∞,

(2) u solves IMCF(((M \ {x0}))).
We say that such a u is proper, if Et(u) ⋐M for all t ∈ R.

The following growth estimate, and its relation with Theorem B, are inspired by similar
arguments in Mari-Rigoli-Setti [79]:

Theorem 2.6.2. Suppose M satisfies (2.6.1). Then for any x0 ∈M , there exists a proper
IMCF core u with pole x0, with the asymptotic

lim
x→x0

∣∣u(x)− (n− 1) log d(x, x0)
∣∣→ 0 (2.6.2)

and the growth estimate

u(x) ⩾ (n− 1) log d(x, x0)− C(n, cI) on M \ {x0}. (2.6.3)

Theorem B is a straightforward consequence of this result:

Proof of Theorem B assuming Theorem 2.6.2.
Fix x0 ∈ E0. Let v be the IMCF core with pole x0, as given by Theorem 2.6.2.

Since v is proper, there exists T ∈ R so that E0 ⋐ ET (v). Let u be the proper solution of
IVP(((M ;E0))). By the maximum principle (Theorem 2.1.12(iii)), it follows that u ⩾ v−T ⩾
(n− 1) log d(·, x0)− (n− 1) logC1 − T on M \ E0.



70 CHAPTER 2. INTERIOR WEAK IMCF

The idea of proving Theorem 2.6.2 is the following: for a radius r ≪ 1, consider the
proper IMCF ũr with initial value E0 = B(x0, r), then normalize ur = ũr + (n− 1) log r.
If a uniform lower bound for ur is obtained, then the (well-defined) limit u = limr→0 ur
would be our desired object.

The main issue here is that the estimate in Theorem 2.5.2 is too weak for this purpose.
Indeed, inserting ip(v) ⩾ cIv

(n−1)/n into (2.5.3) and simplifying the expressions, we have

Et(ũr) ⊂ B
(
x0, r + C(n, cI)(2 + et)et/(n−1)r

)
. (2.6.4)

This only implies

ur ⩾
n− 1

n
log d(·, x0) +

(n− 1)2

n
log r − C(n, rI).

In particular, the leading n−1
n

is weaker than optimal, and more seriously, the log r term
blows up to −∞ when r → 0, which prevents us from getting anything useful.

The essential technical reason is the (2 + et) term in (2.6.4). Tracing back in the proof
of (2.6.4), this term comes from Lemma 2.5.5. More precisely, it comes from applying
Lemma 2.5.5 from the initial time to a time that is roughly (n − 1) log(1/r). This long
time interval is the reason that makes the estimate particularly weak. The key to refining
the estimate is to use Lemma 2.5.5 (or its proof) only in a bounded time interval. The
proof of Theorem 2.6.2 involves a soft blow-up argument, whose meaning will be manifest
in the proof below. We will need the following technical lemma:

Lemma 2.6.3. Suppose M satisfies (2.6.1). Then for each x0 ∈ M , there exists a suffi-
ciently small radius r0, so that B(x0, r) is outward minimizing in M for all r ⩽ r0.

Proof. Suppose r ⩽ r0. By Theorem 2.5.3, B(x0, r) admits a precompact minimizing hull
E in M . Note the following two properties:

(i) if B(x0, r) is not outer area-minimizing, then E ⊋ B(x0, r);
(ii) ∂E \ ∂B(x0, r) is a minimal surface (said rigorously, the support of a stationary

integral varifold).
Inserting our main condition (2.6.1) into the diameter estimate (2.5.6), we obtain

E ⊂ B(x0, R) with

R = r + 2nc
− n
n−1

I P
(
B(x0, r)

) 1
n−1 .

Note that R → 0 when r → 0. So we may choose r0 ≪ 1 so that all the geodesic balls
B(x, ρ), ρ ⩽ R, are strictly mean convex. In view of fact (ii) above, the maximum principle
forces us to have E = B(x0, r). The lemma then follows by fact (i) stated above.

Proof of Theorem 2.6.2.
Let r0 < 10−n satisfy Lemma 2.6.3. Further decreasing r0, we may assume that

P
(
B(x0, r)

)
⩽ 2ωn−1r

n−1, ∀ r ⩽ r0, (2.6.5)

the mean curvature Hr of B(x0, r) satisfies∣∣Hr − (n− 1)r−1
∣∣ < 1, ∀ r ⩽ r0. (2.6.6)

For each r ⩽ r0, let ũr be the proper solution of IVP(((M ;B(x0, r)))) given by Theorem A,
and then set

ur = ũr + (n− 1) log r.
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We first establish a precise asymptotic of ur near x0. Denote d = d(·, x0), and set the
functions

u = (n− 1) log d− d, u = (n− 1) log d+ d+
1

1− d/r0
.

Due to (2.6.6), it is easy to verify

div
( ∇u
|∇u|

)
> |∇u| and div

( ∇u
|∇u|

)
< |∇u| in B(x0, r0) \ {x0},

namely, u, u are subsolution and supersolution of IMCF in B(x0, r0) \ {x0}.

Claim 1. ur ⩾ u in B(x0, r0) \B(x0, r) and ur ⩾ (n− 1) log r0 − r0 on M \B(x0, r0).

Proof. Extend u by the constant value (n − 1) log r0 − r0 on M \ B(x0, r0). Combining
Lemma 2.6.3 and 2.2.4 (extension of subsolutions, with the choice Ω = B(x0, r0) \ {x0}
there), u is a subsolution of IMCF(((M \ {x0}))). Moreover, we have ur > u in ∂B(x0, r).
Thus by the maximum principle (Theorem 2.1.12(i)), we have ur ⩾ u on M \ B(x0, r).
The claim follows. □

Claim 2. ur ⩽ u in B(x0, r0) \B(x0, r).

Proof. Apply Theorem 2.1.12(i) in B(x0, r0), noticing that ur < u in ∂B(x0, r). □

Next, we prove the key growth estimate for ur. For each r ⩽ r0 and t ⩾ (n− 1) log r,
define

D(r, t) := e−
t

n−1 sup
Et(ur)

(
d(·, x0)

)
.

This quantity roughly measures the diameter of Et(ur) compared to its area.

Claim 3. D(r, t) < 4 whenever t ⩽ (n− 1) log(r0/2).

Proof. By Claim 1, we have

u|M\B(x0,r0) ⩾ (n− 1) log r0 − r0 > t,

thus Et(ur) ⋐ B(x0, r0). Using Claim 1 again, we have

Et(ur) ⊂
{

(n− 1) log d− d < t
}
⊂
{

(n− 1) log d− 1 < t
}

=
{
d < e

t+1
n−1

}
.

The claim follows. □

Define the constant

C1 = 1 + c
− n
n−1

I n(2ωn−1)
1

n−1
1 + en−1

1− e−1
. (2.6.7)

The following claim is the core of the proof, which involves the soft blow-up argument.

Claim 4. D(r, t) ⩽ C1 for all r < r0/10 and t ⩾ (n− 1) log r.

Proof. Fix r < r0/10. By Claim 3, we already have D(r, t) < C1 for all t ∈
[
(n −

1) log r, (n − 1) log(r0/2)
]
. Suppose that Claim 4 is not true. Then there exists a time

T > (n− 1) log(r0/2) so that

D(r, T ) > C1 and D(r, T − n+ 1) ⩽ C1, (2.6.8)

where we notice that T −n+ 1 > (n− 1) log r. By the definition of D(r, t), (2.6.8) means
that

ET−n+1(ur) ⊂ B
(
x0, C1e

T/(n−1)−1
)

(2.6.9)
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while ∣∣ET (ur) \B
(
x0, C1e

T/(n−1)
)∣∣ > 0. (2.6.10)

We now argue similarly as in Lemma 2.5.5. For a.e. ρ ∈
[
C1e

T/(n−1)−1, C1e
T/(n−1)

]
,

define the quantities

A(ρ) = P
(
ET (ur);M \B(x0, ρ)

)
, S(ρ) = P

(
B(x0, ρ);ET (ur)

)
and

V (ρ) =
∣∣ET (ur) \B(x0, ρ)

∣∣.
Using the excess inequality (Lemma 2.2.1), we have

P
(
ET (ur)

)
⩽ P

(
ET (ur) ∩B(x0, ρ)

)
+
[
exp

(
T − inf

ET (ur)\B(x0,ρ)
(ur)

)
− 1
]
P
(
B(x0, ρ);ET (ur)

)
.

By (2.6.9), we have infET (ur)\B(x0,ρ)(ur) ⩾ T − n+ 1. So for almost every ρ it holds

A(ρ) ⩽ en−1S(ρ). (2.6.11)

Next, the isoperimetric inequality and coarea formula provide

A(ρ) + S(ρ) ⩾ cIV (ρ)
n−1
n , S(ρ) = − d

dρ
V (ρ), (2.6.12)

for almost every ρ. Combining (2.6.11) (2.6.12), we have the differential inequality

d

dρ
V (ρ) ⩽ − cI

1 + en−1
V (ρ)

n−1
n . (2.6.13)

Integrating in ρ ∈
[
C1e

T/(n−1)−1, C1e
T/(n−1)

]
, and using (2.6.10), we have

V
(
C1e

T/(n−1)−1
) 1
n ⩾ C1e

T/(n−1) · cI(1− e
−1)

n(1 + en−1)
. (2.6.14)

On the other hand, by the isoperimetric inequality we have

V
(
C1e

T/(n−1)−1
)
⩽ |ET (ur)| ⩽ c

− n
n−1

I P
(
ET (ur)

) n
n−1 , (2.6.15)

and by (2.6.5) and the exponential growth of area (Lemma 2.1.10), we have

P
(
ET (ur)

)
⩽ eT−(n−1) log rP

(
B(x0, r)

)
⩽ eT r1−n · 2ωn−1r

n−1 = 2ωn−1e
T . (2.6.16)

Combining (2.6.14) (2.6.15) (2.6.16), we obtain

cI(1− e−1)

n(1 + en−1)
· C1e

T
n−1 ⩽ c

− 1
n−1

I (2ωn−1)
1

n−1 e
T
n−1 ,

contradicting our choice of C1 in (2.6.7) (note that eT/(n−1) are cancelled). □

Suppose r < r0/10. Note that Claim 4 is directly equivalent to

Et(ur) ⊂ B
(
x0, C1e

t/(n−1)
)
, ∀ t ⩾ (n− 1) log r,
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which means that

ur ⩾ (n− 1) log
[
C−1

1 d(·, x0)
]

on M \B(x0, r). (2.6.17)

We are ready to take the limit r → 0. Recall the local gradient estimate from Theorem
2.5.2, which implies

|∇ur|(x) ⩽
C(n)

min
{
d(x, x0), σ(x;M)

} , ∀ r ⩽ d(x, x0)/2, (2.6.18)

where σ(x;M) is a quantity that depends only on the local geometry near x. Combining
(2.6.18) and Claim 1,2, we can use the Arzela-Ascoli theorem to extract a limit (for some
subsequence)

u = lim
r→0

ur in C0
loc

(
M \ {x0}

)
.

It follows from Claim 1,2 that∣∣u− (n− 1) log d
∣∣ < 2d on B(x0, r0/2) \ {x0}, (2.6.19)

and it follows from (2.6.17) that

u ⩾ (n− 1) log d(·, x0)− (n− 1) logC1 on M \ {x0}. (2.6.20)

Finally, by compactness (Theorem 2.1.13), u solves IMCF(((M \ {x0}))). Now Theorem 2.6.2
has been proved.



Chapter 3

IMCF with outer obstacle

This chapter is devoted to the study of IMCF with outer obstacle. The reader may
first read the introduction chapter to obtain a preliminary understanding of this object.
We shall directly enter the technical contents.

Section 3.1 contains some computations for the smooth IMCF in R2. Section 3.2 con-
tains some technical lemmas. In Section 3.3 we present the precise definition of IMCF
with outer obstacle, and prove its fundamental properties. In Sections 3.4 and 3.5 respec-
tively, we prove Liouville theorems on the half space, and derive some parabolic evolution
inequalities. These results aid the proof of the main existence theorem. Finally, in Section
3.6, we prove the main Theorem D.

3.1 Some smooth calculations in R2

In this section, we carry out some specific computations for the smooth IMCF in R2.
In particular, we are interested in the smooth IMCF with outer obstacle in conic domains.

The following setups are used. Suppose γ ⊂ R2 is a smooth curve with nonvanishing
curvature, with unit speed parametrization s. Let τ := dγ/ds be its unit tangential vector,
and θ be a continuous angle function so that τ = (cos θ, sin θ). Let ν := (sin θ,− cos θ) be
the normal vector, and κ := dθ/ds be the curvature. Then note that

dν

ds
= κτ,

dτ

ds
= −κν.

As we have assumed that κ ̸= 0 everywhere, the angle θ is also a valid parametrization
of γ, with d

dθ
= 1

κ
d
ds

. Set the support function h = x · ν, where x is the position vector.
Note that

dh

dθ
= κ−1

(
τ · ν + x · κτ

)
= x · τ,

and
d

dθ
(x · τ) = κ−1

(
τ · τ − κx · ν

)
= κ−1 − h.

Thus we obtain the useful general formulas

x = hν +
dh

dθ
τ, (3.1.1)

and
d2h

dθ2
= κ−1 − h. (3.1.2)

74
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Here, note that ∂θθh+ h is always positive for strictly convex curves.
Now suppose that a family of curves {γt} evolves under the IMCF, while each γt is

parametrized by the angle θ. Note that the curve evolves by

∂γ

∂t
= κ−1ν + φτ

for some function φ on γt. The tangential factor does not affect us computing

∂h

∂t
=

∂

∂t
(x · ν) =

∂x

∂t
· ν = κ−1. (3.1.3)

Joint with (3.1.2), we obtain the evolution of support function

∂h

∂t
=
∂2h

∂θ2
+ h. (3.1.4)

Conversely, if a function h(t, θ) solves (3.1.4) in a square domain (t1, t2) × (θ1, θ2), then
the resulting curves γt given by (3.1.1) is a solution of IMCF. These computations are
already well-known, see [34, 107].

If we are given a closed convex curve γ0 ⊂ R2 whose support function is h0, then the
IMCF {γt} starting with γ0 is given by the support function

ht(θ) = et
∫
S1
Kt(θ, α)h0(α) dα, (3.1.5)

where Kt is the heat kernel on S1. It is easily seen that when t→∞, the rescaled curve
e−tγt smoothly converges to a round circle of radius 1

2π

∫
S1 h0(α) dα.

Remark 3.1.1. The general formula (3.1.5) can even be used to solve the IMCF from
degenerate data. For example, the segment from (−1, 0) to (1, 0) has support function

h0(θ) = | cos θ |.

There is no issue with plugging in this function into (3.1.5). The resulting functions {ht}
are the support functions of a smooth IMCF for all t > 0, with convergence to round
circles as t→∞. The more interesting aspect is when t→ 0. We notice that:

(i) γt converges to the segment from (−1, 0) to (1, 0) in the Hausdorff topology. This
easily follows from the fact that ht ↘ h0 in C0(S1).

(ii) d
(
γt(π/2), (0, 0)

)
= 2√

π

√
t+ o(

√
t). Indeed, we have

d
(
γt(π/2), (0, 0)

)
= ht(π/2)

=
et√
4πt

∫
R
e−x

2/4t | sinx| dx

=
et√
πt

[ ∫ π/2

0

+

∫ ∞

π/2

]
e−x

2/4t | sinx| dx =: I + II .

Note that

I =
et√
πt

∫ π/2

0

e−x
2/4t
(
x± Cx3

)
dx =

2√
π

√
t
(
1 + o(1)

)
, (3.1.6)
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where ±Cx3 is an expression bounded by Cx3 in [−π/2, π/2]. Then note that

0 ⩽ II ⩽
et√
4πt

∫
R\[−π/2,π/2]

e−x
2/4t dx ⩽ Ce−π

2/16t. (3.1.7)

The result follows. We remark that the
√
t rate of movement has been observed in all

dimensions, see [54, Theorem 1.1], [31, Theorem A.5], and the comments in [54, p.434].

(iii) d
(
γt(0), (1, 0)

)
⩽ 1 + Ce−π

2/16t. Indeed, we have

1 + d
(
γt(0), (1, 0)

)
= ht(0) =

et√
4πt

∫
R
e−x

2/4t | cosx| dx

=
et√
πt

[ ∫ π/2

0

+

∫ ∞

π/2

]
e−x

2/4t | cosx| dx =: I + II .

We have II ⩽ Ce−π
2/16t similarly as (3.1.7). It is well-known that∫ ∞

0

e−x
2/4t cosx dx = e−t

√
πt,

hence

I = 1− et√
πt

∫ ∞

π/2

e−x
2/4t cosx dx ⩽ 1 +

et√
πt

∫ ∞

π/2

e−x
2/4t dx ⩽ 1 + Ce−π

2/16t,

The result follows. See Figure 3.1 for a depiction of the small time behavior.

⩽ Ce−π
2/16t

C
√
t+ o(

√
t)

(1, 0)(−1, 0)

γt

Figure 3.1: The IMCF in R2 starting from a segment

In general, starting with the boundary of a convex domain E0 ⋐ R2 there always exists
a smooth IMCF {γt}t>0 such that:

(i) γt → ∂E0 in the Hausdorff sense as t→ 0;
(ii) if x0 ∈ ∂E0 is a regular point, i.e. ∂E0 is a smooth curve with nonvanishing curvature

near x0, then γt → ∂E0 smoothly near x0;
(iii) if x0 ∈ ∂E0 is a flat point, then d(x0, γt) = C

√
t
(
1 + o(1)

)
for some constant C;

(iv) if x0 ∈ ∂E0 is a corner point, then d(x0, γt) ⩽ C1e
−C2/t for some C1, C2 > 0.

Note that (iv) is unique to dimension 2. In higher dimensions, the IMCF starting with
a convex hypersurface will stick at cone vertices, due to the presence of nontrivial cone
solutions (see Example 1.1.5).

3.1.1 Solitons

We summarize the classification of translating and homothetic solitons of IMCF in
R2, following the previous works [25, 26, 37, 62, 63]. See also [26] for more complicated
solitons with simultaneous scaling and rotating behaviors.
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In the above mentioned works, it was noticed that planar solitons of IMCF are usually
incomplete. However, due to the nature of their endpoint singularities, the soliton curves
contact tangentially with the boundary of the region that they sweep out. Therefore,
the solutions that they generate would respect the boundary obstacle. This observation
provides us the first class of nontrivial explicit examples. The setups in the previous
subsection are assumed.

Translating soliton. A curve γ is called a translating soliton of IMCF, if for some
fixed vector w ∈ R2, the family of curves γt = γ+ tw solves the IMCF. Since the evolution
speed of this family is ν · w, we obtain the soliton equation

κ−1 = ν · w. (3.1.8)

Up to a scaling and rigid motion, let us assume w = ∂x, thus κ−1 = ν ·∂x = sin θ. Inserting
this into (3.1.2) and adding a boundary condition h(0) = dh

dθ
(0) = 0, we obtain

h(θ) = −1

2
θ cos θ +

1

2
sin θ.

Then inserting into (3.1.1), we obtain

γ(θ) =
1

4

(
1− cos 2θ, 2θ − sin 2θ

)
, θ ∈ (0, π). (3.1.9)

This is exactly the cycloid equation.
The curve γ is embedded into the strip region Ω = R × (0, π/2), and its endpoints

γ(0), γ(π) lie on ∂Ω. By Taylor expansion, near γ(0) the curve is the graph of

y =
2
√

2

3
x3/2 +O(x5/2), x > 0. (3.1.10)

A similar result holds near γ(π) by symmetry. Thus, the boundary tangency condition
is met (at a Hölder modulus). Let u be the level set function. The boundary of Et(u)
consists of a translation of γ and two horizontal radial lines, hence is a C1,1/2 curve.

Figure 3.2: translating cycloids in a strip region.

Homothetic soliton. A curve γ is called a homothetic soliton of IMCF, if for some
constant c ∈ R, the family of curves γt = ectγ solves the IMCF. Since the evolution speed
for this family at t = 0 is cx · ν = ch, the equation for homothetic solitons reads

κ−1 = ch. (3.1.11)

Thus by (3.1.2), this implies
d2h

dθ2
= (c− 1)h. (3.1.12)

Let us assume c < 1 since this is the case of relevance. Solving (3.1.12), we obtain up to a
normalization h(θ) = sin

(√
1− c θ

)
. Since the curve γ becomes singular when h(θ) = 0,
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due to (3.1.11), we restrict the parameter to a single period θ ∈ (0, π/
√

1− c). Then we
insert the expression into (3.1.1) and obtain the curve γ(θ) in complex form:

γ(θ) = − sin
(√

1− c θ
)
ieiθ +

√
1− c cos

(√
1− c θ

)
eiθ. (3.1.13)

Setting µ = 1−
√

1− c and k = 1+
√
1−c

1−
√
1−c , we can rewrite (3.1.13) as

γ(θ) =
1

2
µ
(
keiµθ − eikµθ

)
. (3.1.14)

Comparing with the classical equations [68, Section 6.3, 6.5], we find that (3.1.14) de-
scribes a hypocycloid (c < 0) or epicycloid (c > 0). This was previously observed in
[25, 37]. Notice that h(0) = h

(
π/
√

1− c
)

= 0, so γ is tangent to the radial line connect-
ing the origin and its endpoints.

By Taylor expanding (3.1.14), we have

γ(θ) =
1

2
µ(k − 1) +

1

4
µ3(k2 − k)θ2 +

i

12
µ4(k3 − k)θ3 +O(θ4).

Note that the quadratic term is real and the cubic term is imaginary. This shows again
that γ is asymptotic to y = Cx3/2 near the endpoint θ = 0.

Example 3.1.2.

(i) Assume c < 0, and set T = π/
√

1− c. From (3.1.13) we have γ(0) =
√

1− c and
γ(T ) =

√
1− c eiπ/

√
1−c−iπ. Hence γ is supported in a planar cone domain Ω with

angle
(
1 − 1√

1−c

)
π. By the above discussion, the family {ectγ} solves the IMCF

and satisfies the boundary tangency condition at ∂Ω. Taking u to be the level set
function for the family γt = ectγ, we notice that u→ +∞ at the origin.

(ii) Assume c > 0. Similarly as above, the family of curves {ectγ} solve the IMCF
in a cone domain Ω with angle

(
1√
1−c − 1

)
π, and satisfies the boundary tangency

condition. This time, the correponding level set u satisfies limx→0 u(x) = −∞.
Notice that γ is embedded in R2 only when c ⩽ 8/9. For the case c > 8/9, we may
view γ as embedded in the universal cover of R2 \ {0}.

(iii) In the special case c = 3
4
, the supporting domain Ω becomes a half plane. In this

case, we obtain expanding nephroid as introduced in Example 1.4.4.

(iv) Let u be the expanding soliton as in (ii). Then the restriction of u to Ω := {u < 0}
is a non-constant IMCF inside a bounded domain.

Figure 3.3: shrinking hypocycloid, expanding epicycloid and nephroid.
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3.1.2 IMCF in conic domains

For 0 < α ⩽ π, consider the conical domain

Ω =
{
reiθ : r > 0, 0 < θ < α

}
⊂ R2.

Suppose S0 ⊂ Ω is a compact convex set with 0 ∈ ∂S0. Let us consider the IMCF that
starts from ∂S0 in Ω, and satisfies the boundary tangency condition at ∂Ω (namely, the
evolving curves must be tangent to ∂Ω). Similar to Remark 3.1.1, we allow S0 to be non-
strictly convex, non-smooth, or have empty interior. We even allow ∂S0 to not satisfy
the boundary tangency condition at ∂Ω. See Figure 3.4: an extreme case is where S0 is
a segment in the middle of Ω.

Ω

S0

α
2

α
2

Figure 3.4: The case where S0 is a segment

We seek a family of C1 curves {γt}t>0, such that:
(i) γt → ∂S0 in the Hausdorff sense as t→ 0,

(ii) the interior of γt is smooth and solves the IMCF for all t > 0,
(iii) γt is tangent to ∂Ω at its endpoints.

The resulting solution will be an IMCF with “initial value S0” and outer obstacle ∂Ω.
See Figure 3.5 below for a depiction of such a solution.

−→ θ = 0

−→

θ = π + α

Figure 3.5: The IMCF issuing from S0.

To explicitly compute the solution, we solve the general equation (3.1.4) with Dirichlet
boundary conditions. We fix the domain of angles

I = [0, π + α].

For θ ∈ I, define the support function h0 as usual:

h0(θ) = max
{
x · (cos θ, sin θ), x ∈ S0

}
.
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Note that h0 is Lipschitz in [0, π+α], with h0 ⩾ 0 and h0(0) = h0(π+α) = 0. Furthermore,
it is well-known that ∂θθh0 + h0 ⩾ 0 in the viscosity sense. In the case of Figure 3.4, we
have h0|[0,α/2] = h0|[π+α/2,π+α] = 0 and h0|[α/2,π+α/2] = sin(θ − α/2).

Then we consider the system
∂th = ∂θθh+ h in [0, π + α]× (0,∞),

h(0, θ) = h0(θ), ∀ θ ∈ [0, π + α],

h(t, 0) = h(t, π + α) = 0, ∀ t ⩾ 0.

This has the solution

ht(θ) = et
∫ π+α

0

K̃t(θ, λ)h0(λ) dλ, (3.1.15)

where K̃t is the Dirichlet heat kernel in [0, π + α], given by

K̃t(θ, λ) =
2

π + α

∑
k⩾1

exp
[
− k2π2t

(π + α)2

]
sin
( kπθ

π + α

)
sin
( kπλ

π + α

)
. (3.1.16)

Then, the curve γt can be recovered from ht using the formula γt = ht · ν + ∂θht · τ ,
0 ⩽ θ ⩽ π + α, see (3.1.1). Extending ht to [0, 2π] with zero value on [π + α, 2π], the
resulting support function corresponds to a convex domain which we call Et. Note that
Et ⊂ Ω and γt ⊂ ∂Et. We note the following facts about γt.

(i) The interior of γt is smooth for all t > 0. By the strong maximum principle, we
have ∂θθht + ht > 0 for all t > 0, θ ∈ (0, π + α). Then we may calculate

∂γt
∂θ

=
[∂ht
∂θ

ν + htτ
]

+
[∂2ht
∂θ2

τ − ∂ht
∂θ

ν
]

=
(
ht + ∂θθht

)
τ,

hence the angle θ is a non-degenerate parametrization, showing that γt is a smooth curve.
(ii) γt is tangent to ∂Ω at its endpoints. This follows from ht(0) = ht(π + α) = 0.
(iii) Convergence as t → 0. Note that h0 is a continuous function on [0, π + α], with

h0(0) = h0(π + α) = 0. Hence ht → h0 in C0[0, π + α]. This implies Et → S0 in the
Hausdorff sense as t→ 0.

(iv) Convergence as t→∞. Dropping the higher order term in (3.1.16), we have

lim
t→∞

exp
[( π2

(π + α)2
− 1
)
t
]
ht(θ) = sin

( πθ

π + α

)
· 2

π + α

∫ π+α

0

sin
( πλ

π + α

)
h0(λ) dλ︸ ︷︷ ︸

constant

,

where the convergence holds in C∞([0, π+α]
)
. Hence, a suitable rescaling of γt converges

to the curve whose support function is

h∞(θ) = sin
( πθ

π + α

)
, 0 ⩽ θ ⩽ π + α.

Denoting β = π/(π + α), the general formula (3.1.1) gives

γ∞(θ) = −i sin(βθ)eiθ + β cos(βθ)eiθ.

This aligns with (3.1.13), thus γ∞ is exactly an epicycloid supported in Ω. So the conclu-
sion is that exp

[(
π2

(π+α)2
− 1
)
t
]
γt converges to a scaling of the epicycloid γ∞.
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3.2 Further auxiliary results

From now on, we work with the weak IMCF. This section contains a few useful tech-
nical lemmas.

3.2.1 Weak solutions with weights

This is a brief technical section, where we introduce the notion of IMCF with a weight
function. Given a function ψ ∈ C∞(Ω), the corresponding weighted IMCF refers to the
following equation:

div
(
eψ
∇u
|∇u|

)
= eψ|∇u|. (3.2.1)

In the smooth regime, this corresponds to the curvature flow

∂Σt

∂t
=

ν

H + ∂ψ/∂ν
.

We call u a subsolution (resp. supersolution) of (3.2.1), if the equality sign is replaced
by “⩾ ” (resp. “⩽ ”).

Lemma 3.2.1. Regarding a function u ∈ Liploc(Ω), the following are equivalent:
(1) for all v ∈ Liploc(Ω) and every domain K with {u ̸= v} ⋐ K ⋐ Ω, we have∫

K

eψ
(
|∇u|+ u|∇u|

)
⩽
∫
K

eψ
(
|∇v|+ v|∇u|

)
. (3.2.2)

(2) Setting Ω̃ = Ω×S1 with the warped product metric g̃ = g+ e2ψ(x)dz2, the function

ũ(x, z) = u(x) is a solution of IMCF(((Ω̃, g̃))).

(3) u is a solution of IMCF(((Ω; g′))), where g′ = e
2ψ
n−1 g.

We call u a weak solution of (3.2.1), if any of the above conditions holds.

The characterization (3) allows the standard theory of IMCF to be extended to the
weighted case. In particular, if u weakly solves (3.2.1), then each Et locally minimizes

E 7→
∫
∂∗E

eψ dHn−1 −
∫
E

eψ|∇u| (3.2.3)

in the same sense with Definitions 2.1.1, 2.1.2. The notion of weak sub- and super-
solutions can be defined similarly. The maximum principle (Theorem 2.1.12) holds for
weighted solutions as well. When ψ = 0 in a certain region, u reduces to a usual weak
solution of IMCF.

In the context of mean curvature flow, similar warping and conformal transformations
are used to relate mean curvature flow to minimal surfaces, see [56, 82, 102].

Proof of Lemma 3.2.1.
(1)⇒ (2). Given a function ṽ(x, t) and domain K̃ with {ũ ̸= ṽ} ⋐ K̃ ⋐ Ω × S1. By

enlarging K̃, we may assume that K̃ = K × S1 for some K ⋐ Ω. We need to show∫
K̃

(
|∇̃ũ|+ ũ|∇̃ũ|

)
dVg̃ ⩽

∫
K̃

(
|∇̃ṽ|+ ṽ|∇̃ũ|

)
dVg̃, (3.2.4)
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where |∇̃ · | denotes the norm of gradient with respect to g̃. Using the facts dVg̃(x, z) =
eψ(x)dVg(x)dz, ũ(x, z) = u(x) and |∇ṽ(x, z)| ⩾ |∇xṽ(x, z)|, it is sufficient to show

2π

∫
K

eψ
(
|∇u|+ u|∇u|

)
dVg ⩽

∫
K×S1

eψ(x)
(
|∇xṽ(x, z)|+ ṽ(x, z)|∇̃ũ(x)|

)
dVg(x)dz.

However, this follows from Fubini’s theorem and (3.2.2).
(2)⇒ (1): It is now our hypothesis that (3.2.4) holds for any competitor ṽ. Choosing

ṽ(x, t) = v(x) and K̃ = K × S1, we find that (3.2.4) implies item (1).

(1)⇔ (3): Note that dVg′ = e
nψ
n−1dVg and |∇g′f | = e−

ψ
n−1 |∇gf | for all f . Therefore, u

being a solution of IMCF(((Ω, g′))) is equivalent to∫
K

(
e−

ψ
n−1 |∇gu|+ ue−

ψ
n−1 |∇gu|

)
e
nψ
n−1dVg ⩽

∫
K

(
e−

ψ
n−1 |∇gv|+ ve−

ψ
n−1 |∇gu|

)
e
nψ
n−1dVg

whenever {u ̸= v} ⋐ K ⋐ Ω. This inequality is identical with (3.2.2).

Remark 3.2.2. When a weighted IMCF is considered, with the interpretation of Lemma
3.2.1(3), the corresponding elliptic regularization takes the form

div
(
eψ

∇u√
ε2e2ψ/(n−1) + |∇u|2

)
= eψ

√
ε2e2ψ/(n−1) + |∇u|2. (3.2.5)

To derive this, we note that the regularized equation writes

divg′
( ∇g′u√

ε2 + |∇g′u|2
)

=
√
ε2 + |∇g′u|2, where g′ = e

2ψ
n−1 g.

Since ∇g′u = e−2ψ/(n−1)∇gu and |∇g′u|2 = e−2ψ/(n−1)|∇gu|2, this is equivalent to

divg′
(
e−ψ/(n−1) ∇u√

ε2e2ψ/(n−1) + |∇u|2
)

= e−ψ/(n−1)
√
ε2e2ψ/(n−1) + |∇u|2.

Since divg′(X) = divgX + n
n−1
⟨X,∇gψ⟩g for all X, from this we obtain (3.2.5).

3.2.2 A higher integrability lemma

The following lemma is used in Subsection 3.3.3, but may be of its own interest:

Lemma 3.2.3 (higher integrability). Suppose Ω ⊂ M is locally Lipschitz, and u ∈
Liploc(Ω) is a subsolution of IMCF(((Ω))). Then∫

Ω∩K
|u|p |∇u| <∞ ∀K ⋐M, p ⩾ 1. (3.2.6)

In fact, the proof of Lemma 3.2.3 yields the stronger result:

Lemma 3.2.4. Assume the same conditions as in Lemma 3.2.3. Then for all K ⋐ M ,
there is a constant c so that ∫

Ω∩K
ec|u| <∞. (3.2.7)
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Proof of Lemma 3.2.3.
By Lemma A.5.1, we may assume without loss of generality that Ω ⋐ K ⋐ M . Then

by Lemma A.5.3, ∂Ω admits a Lipschitz collar neighborhood. Let N ⊂ Ω and Φ : N → ∂Ω
be the neighborhood and Lipschitz retraction map obtained there.

Since u ∈ Liploc(Ω), we have supΩ\N |u| < T for some T . By Theorem 3.3.8, u is

a subsolution of IMCF(((Ω)))+OBS(((∂Ω))). Comparing J̃Ku (Et(u)) ⩽ J̃Ku (Ω), by the coarea
formula we obtain

P (Et(u)) +

∫ ∞

t

P
(
Es(u); Ω

)
ds ⩽ P (Ω). (3.2.8)

For t ⩾ T we have Et(u) ⋑ Ω \ N , thus Φ maps ∂∗Et(u) surjectively to ∂∗Ω up to a
Hn−1-null set. By the area formula we have

P (Ω) ⩽ Hn−1
(
∂∗Et(u) ∩ ∂∗Ω

)
+ Lip(Φ)n−1P

(
Et(u); Ω

)
. (3.2.9)

Cancelling the common portion of perimeters in (3.2.8) and (3.2.9), we obtain∫ ∞

t

P (Es(u); Ω) ds ⩽
(
Lip(Φ)n−1 − 1

)
P
(
Et(u); Ω

)
, ∀ t ⩾ T.

Hence P
(
Et(u); Ω′) exponentially decays, and

∫
u⩾T u

p|∇u| <∞ by the coarea formula.

For t ⩽ −T , we compare J̃u(Es(u)) ⩽ J̃u(Et(u)) and take s→ −∞, to find∫ t

−∞
P
(
Es(u); Ω

)
ds ⩽ P (Et(u)).

Since Et(u) ⋐ N , projecting via Φ we find that

P
(
Et(u)

)
⩽
(
Lip(Φ)n−1 + 1

)
P
(
Et(u); Ω

)
.

The combined inequality implies that P (Et(u); Ω) decays exponentially when t → −∞.
By the coarea formula, we have

∫
u⩽−T (−u)p|∇u| <∞. Finally, we have

∫
|u|⩽T |u|

p|∇u| ⩽
2T pP (Ω) by Lemma 2.2.2(i), and thus (3.2.6) is proved.

Proof of Lemma 3.2.4.
By Lemma A.5.1, we may enlarge K and assume that Ω ∩K is a Lipschitz domain.

From the above proof, we infer that there is are constants c, C > 0 independent of t, so
that

P
(
Et(u); Ω

)
⩽ Ce−c|t|, ∀ t ∈ R.

By the coarea formula, this implies∫
Ω∩K

∣∣∇ec′|u|∣∣ = c′
∫
Ω∩K

ec
′|u||∇u| <∞

for all c′ < c. Then by the Poincare inequality, we have∫
Ω×Ω

∣∣∣ec′|u(x)| − ec′|u(y)|∣∣∣ dx dy <∞.
Thus for some x ∈ Ω we have

∫
Ω

∣∣ec′|u|−ec′|u(x)|∣∣ <∞. This implies the desired result.
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3.3 Definitions and basic properties

In this section, we set up the general framework for IMCF with outer obstacle.

3.3.1 Formulation using sub-level sets

We use the following variational principle as the starting point of the theory. Recall
our convention that all the manifolds are assumed to be smooth, connected, oriented,
without boundary, and all domains Ω are assumed to be connected.

Definition 3.3.1. Let Ω ⊂M be a locally Lipschitz domain. For a function u ∈ Liploc(Ω),
a domain K ⋐M , and a set E ⊂ Ω, we define the energy

J̃Ku (E) := P (E;K)−
∫
E∩K
|∇u| (3.3.1)

whenever the two terms are not both infinite.
We say that a set E ⊂ Ω locally minimizes J̃u (resp. minimizes from inside, outside),

if for any F ⊂ Ω (resp. for any F ⊂ Ω with F ⊂ E, F ⊃ E) and any domain K that
satisfy E∆F ⋐ K ⋐M , we have

J̃Ku (E) ⩽ J̃Ku (F ) (3.3.2)

whenever both energies are defined.

Definition 3.3.2 (outer obstacle I).
Let Ω be a locally Lipschitz domain in M . We say that u is a (sub-, super-) solution

of IMCF(((Ω)))+OBS(((∂Ω))), if u ∈ Liploc(Ω), and Et := {u < t} locally minimizes J̃u (resp.
minimizes from outside, inside) for each t ∈ R.

Notice that:
(1) A solution of IMCF(((Ω)))+OBS(((∂Ω))) is clearly a solution of IMCF(((Ω))).
(2) If M = Ω, then IMCF(((Ω)))+OBS(((∂Ω))) is equivalent to IMCF(((Ω))).

Given an interior solution u (i.e. u solves IMCF(((Ω)))), we say that u respects the obstacle ∂Ω
if u actually solves IMCF(((Ω)))+OBS(((∂Ω))). When we need to clarify the background metric,
we will write IMCF(((Ω, g)))+OBS(((∂Ω))).

Remark 3.3.3 (integrability in the definition of J̃u).
The energy (3.3.1) is not a priori defined, since u is only guaranteed interior regularity.

However, if u is a subsolution of IMCF(((Ω))), then J̃Ku (Et) is always defined and is finite,

due to Lemma 2.2.2(i). By the same lemma, J̃Ku (E) is defined and finite provided E has
locally finite perimeter (which will always be the case in specific energy comparisons).
Hence, there is no integrability issue for interior subsolutions.

The case of supersolution is more complicated. If u is a supersolution of IMCF(((Ω))) with
additionally

inf
Ω∩K

u > −∞ for all K ⋐M, (3.3.3)

then J̃Ku (Et) is always defined and is finite, by Lemma 2.2.2(ii). Since any competitor set

E is contained in Et, it follows that
∫
E∩K |∇u| ⩽

∫
Et∩K |∇u|, thus J̃Ku (E) is also defined

with finite value. On the other hand, see Remark 3.3.4 below that J̃u = −∞ may occur
for general supersolutions.
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Remark 3.3.4 (a supersolution not belonging to BVloc(Ω)).
Consider Ω = {(x, y) : −1 < x < 1} ⊂ R2 and the function u(x, y) = tan(πx/2). We

argue that u is a supersolution of IMCF(((Ω)))+OBS(((∂Ω))). First, it is easy to see that u is a
smooth supersolution of IMCF(((Ω))). Let F ⊂ Et be a competitor with Et \ F ⋐ R2. One
of the following two cases must occur for F .

(1) Et∆F ⋐ Ω. In this case the energy comparison is entirely interior.

(2) Et∆F has nonempty intersection with {x = −1}. In this case J̃Ku (Et) = −∞ for

all K ⋑ Et∆F , thus J̃Ku (Et) ⩽ J̃Ku (F ) trivially holds.
Therefore, u is a supersolution satisfying Definition 3.3.2.
On the other hand, for any increasing function f ∈ C∞(−1, 1) with limx→−1 f(x) >

−∞, the interior supersolution u(x, y) = f(x) does not respect the obstacle ∂Ω. Infor-
mally speaking, such function is only a supersolution of IMCF(((Ω)))+OBS((({x = 1}))).

The following remark includes several useful observations regarding the definitions.

Remark 3.3.5 (properties and relations).

(i) Note the differences between Definition 3.3.1, 3.3.2 and the interior formulation: (a)
the comparison set E must be contained in Ω, but the difference set E∆Et is allowed
to touch ∂Ω (this characterizes an outer obstacle problem); (b) the boundary portion

of perimeter ∂∗E ∩ ∂Ω is contained in the energy J̃u. If we remove the boundary
portion in item (b), then we obtain the energy

ĴK0;u(E) = P
(
E; Ω ∩K

)
−
∫
E∩Ω∩K

|∇u|,

which describes the weak IMCF with free boundary [84]. For a constant θ ∈ (−1, 1),
we may vary the energy to be

ĴKθ;u(E) = P
(
E; Ω ∩K

)
+ θ · Hn−1

(
∂∗E ∩ ∂∗Ω ∩K

)
−
∫
E∩Ω∩K

|∇u|.

This describes weak solutions with capillary boundary condition, corresponding to
the flow such that each hypersurface keeps the contact angle arccos(θ) with ∂Ω. No
existence result is known for the weak IMCF with capillary conditions, except for
the free boundary case θ = 0 [64, 84] and the obstacle case θ = 1 considered by us.

(ii) The following inequality is useful:

J̃Ku (E ∩ F ) + J̃Ku (E ∪ F ) ⩽ J̃Ku (E) + J̃Ku (F ), (3.3.4)

for all E,F ⊂ Ω with finite perimeter in K and u ∈ BV(Ω ∩K). It follows that u
is a solution of IMCF(((Ω)))+OBS(((∂Ω))) if it is both a subsolution and supersolution.

(iii) It is natural to wonder how the area grows in the IMCF with outer obstacle. Let u be
a solution of IMCF(((Ω)))+OBS(((∂Ω))). If Et ⋐M for each t, then the energy comparison

forces J̃Ku (Es) = J̃Ku (Et) for all s < t. This implies

P (Es) = P (Et)−
∫ t

s

P (Er; Ω) dr ⩾ P (Et)−
∫ t

s

P (Er) dr. (3.3.5)

In particular, we have sub-exponential growth of area

P (Et) ⩽ et−sP (Es), ∀ t > s, (3.3.6)
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with strict inequality when Hn−1
(
∂∗Es ∩ ∂∗Ω

)
̸= 0. In Example 3.1.2(ii) of ex-

panding epicycloids, for instance, it holds P (Et) = ec(t−s)P (Es) where c ∈ (0, 1)
is the expanding rate defined there. From (3.3.5) and using Hn−1

(
∂∗Es ∩ ∂Ω

)
⩽

Hn−1
(
∂∗Et ∩ ∂Ω

)
, we have

P (Es; Ω) ⩾ P (Et; Ω)−
∫ t

s

P (Er; Ω) dr,

which implies

P (Et; Ω) ⩽ et−sP (Es; Ω), ∀ t > s. (3.3.7)

(iv) For u a solution of IMCF(((Ω)))+OBS(((∂Ω))), the set E+
t also locally minimizes J̃u for each

t ∈ R. This follows from E+
t =

⋂
s>tEs and the set-replacing argument.

(v) When Ω ⋐ M , the constant function on Ω is not a solution of IMCF(((Ω)))+OBS(((∂Ω))).

Indeed, setting u ≡ c we find that J̃Ku (Ec+1(u)) = P (Ω) > 0 = J̃Ku (∅), for any
K ⋑ Ω. For a noncompact Ω, constant functions are solutions of IMCF(((Ω)))+OBS(((∂Ω)))
if and only if Ω is locally inward perimeter-minimizing (we leave this to the reader as
an exercise). An interesting example for this is M = H2×R and Ω = {−π/2 < z <
π/2}, where z is the coordinate in the R-direction. This set is inward-minimizing
since it is calibrated by the vector field ν = sin(z)∂z − cos(z) tanh(r/2)∂r.

(vi) When Ω ⋐M , there exists no solution u of IMCF(((Ω)))+OBS(((∂Ω))) such that infΩ(u) >
−∞. Indeed, if infΩ(u) = −T > −∞, then by (3.3.6) we have

P (Et) ⩽ et+T+1P (E−T−1) = 0

for all t, which is impossible. On the other hand, the nephroid Example 3.1.2(iv)
shows that there do exist solutions that are unbounded below. For these solutions
u, it holds P (Ω) =

∫
Ω
|∇u| and P (Et) =

∫
Et
|∇u| for all t. In general, all solutions of

IMCF(((Ω)))+OBS(((∂Ω))) for bounded Ω must have poles at ∂Ω. The reader may thought
of these solutions as Piosson kernels.

(vii) If u is a subsolution of IMCF(((Ω)))+OBS(((∂Ω))), then so is min{u, T} for all T ∈ R. On
the other hand, this truncation property does not hold for supersolutions.

Definition 3.3.6 (initial value problem).
Let M be a manifold without boundary, and Ω be a locally Lipschitz domain in M ,

and E0 ⊂ Ω be a C1,1 domain with ∂E0 ∩ ∂Ω = ∅. A function u ∈ Liploc(Ω) is called a
(sub-, super-) solution of IVP(((Ω;E0)))+OBS(((∂Ω))) in M , if

(i) E0 = {u < 0},
(ii) u|Ω\E0

is a (sub-, super-) solution of IMCF(((Ω\E0)))+OBS(((∂Ω))).
We say that two solutions u1, u2 are equivalent, if u1 = u2 on Ω \ E0.

Similar to the interior case, we have an equivalent formulation stated below. The proof
is is almost the same as in Definition 2.1.8, thus we choose to omit it here.

Theorem 3.3.7 (initial value problem II).
Let M , Ω, E0 be as in Definition 3.3.6, and suppose u ∈ Liploc(Ω). Then u is a

solution of IVP(((Ω;E0)))+OBS(((∂Ω))) if and only if
(i) E0 = {u < 0},
(ii) for any t > 0, any set E with E0 ⊂ E ⊂ Ω, and any domain K with E∆Et ⋐

K ⋐M , we have J̃Ku (Et(u)) ⩽ J̃Ku (E).
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The following observation is important in relating interior solutions to solutions with
outer obstacles.

Theorem 3.3.8 (automatic subsolution).
Suppose Ω is a locally Lipschitz domain, and u is a subsolution of IMCF(((Ω))). Then u

is a subsolution of IMCF(((Ω)))+OBS(((∂Ω))).

Proof. This is just a re-statement of Lemma 2.2.3.

We end this subsection with the following connectedness lemma.

Lemma 3.3.9. Suppose E0 ⋐ Ω ⋐ M and E0 is connected, and u is a solution of
IVP(((Ω;E0)))+OBS(((∂Ω))). Then Et(u) is connected for all t > 0.

Proof. Otherwise, suppose S is a connected component of Et(u) that does not intersect
E0. Thus there is a domain U with S ⋐ U ⋐ M \ E0 and Et(u) ∩ U = S. Denote
ũ = u|Ω\E0

and T = infU(ũ) ⩾ 0. For each s < t, note that Es(ũ)∩U ⋐ U , hence we may

compare the energies J̃Uũ (Es(ũ)) ⩽ J̃Uũ
(
Es(ũ) \ U

)
= J̃Uũ (∅) = 0 and obtain

P
(
Es(ũ);U

)
⩽
∫
Es(ũ)∩U

|∇u| =
∫ s

T

P
(
Es′(ũ);U

)
ds′.

Then by Gronwall’s inequality P
(
Es(ũ);U

)
= 0 for all s < t, which is a contradiction.

3.3.2 Outward minimizing properties

For a weak solution u respecting an outer obstacle, the sub-level sets of u satisfy
certain outward minimizing properties subject to the outer obstacle ∂Ω. When M = Ω,
the conclusions here reduce to the interior case.

Definition 3.3.10. Given a locally Lipschitz domain Ω. We say that a set E ⊂ Ω
is locally outward minimizing in Ω, if for any competitor F and domain K satisfying
E ⊂ F ⊂ Ω and F \ E ⋐ K ⋐M , we have

P (E;K) ⩽ P (F ;K). (3.3.8)

We say that E is strictly locally outward-minimizing, if (3.3.8) is a strict inequality
whenever |F \ E| > 0.

Definition 3.3.11. Given two sets E,E ′ with E ⊂ E ′ ⊂ Ω. We say that E ′ is the
minimizing hull of E in Ω, provided that:

(i) E ′ is strictly outward minimizing in Ω,
(ii) if E ′′ is another strictly outward minimizing set in Ω, with E ⊂ E ′′ ⊂ Ω, then we

have E ′ ⊂ E ′′ up to a set with zero measure.

Similar to the interior case (see Section A.4), it can be verified that any set E ⊂ Ω
has at most one minimizing hull, up to modifications of zero measure. The proof of the
following result is the same as in Facts 1.2.9∼ 1.2.14.

Theorem 3.3.12 (minimizing properties).
Let u be a solution of IMCF(((Ω)))+OBS(((∂Ω))). Then for all t ∈ R it holds
(i) Et is locally outward minimizing in Ω,
(ii) E+

t is strictly locally outward minimizing in Ω,
(iii) E+

t is the minimizing hull of Et in Ω, provided E+
t \ Et ⋐M .
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For solutions of initial value problems, the initial time t = 0 is not included. Hence
we additionally state

Theorem 3.3.13. Let M , Ω, E0 be as in Definition 3.3.6, and suppose that u is a
solution of IVP(((Ω;E0)))+OBS(((∂Ω))). Then for each t ⩾ 0, E+

t is the minimizing hull of Et
in Ω, provided that E+

t \ Et ⋐M .

Proof. The case t > 0 is already covered by Theorem 3.3.12, since ∂Et∩∂E0 = ∅. Taking
Theorem 3.3.7(ii) and approximating t→ 0+, it follows that J̃Ku (E+

0 ) ⩽ J̃Ku (E) whenever
E0 ⊂ E ⊂ Ω and E∆E+

0 ⋐ K ⋐ M . Then the same argument as in Theorem 3.3.12
shows that E+

0 is the strictly minimizing hull of E0.

In initial value problems with outer obstacle, the area of level sets follow the rule of
sub-exponential growth. Note that it may hold P (Et) < etP (E0) even if E0 is outward
minimizing in Ω; see Remark 3.3.5(iii).

Corollary 3.3.14. LetM,Ω, E0 be as in Definition 3.3.6, and suppose that u is a solution
of IVP(((Ω;E0)))+OBS(((∂Ω))). Then for any 0 ⩽ s < t with Et ⋐M , we have

P (Et) ⩽ et−sP (Es).

Proof. The fact Et ⋐ M implies E0 ⋐ M . In particular, it implies E0 ⋐ Ω as we have
assumed ∂E0 ∩ ∂Ω = ∅ in Definition 3.3.6. Since u ∈ Liploc(Ω), for every 0 < s < t we

have Et \ Es ⋐ M \ E0. Hence the energy comarison forces J̃Ku (Es) = J̃Ku (Et) for any
K ⋑ Ω. Arguing as in Remark 3.3.5(iii), this implies P (Et) ⩽ et−sP (Es).

Then we consider the case s = 0. By Theorem 3.3.7 and the standard approximation
argument, each E+

s (s ⩾ 0) has the same minimizing property as described in Theorem
3.3.7(ii). By mutual energy comparison, this implies P (E+

s ) ⩽ esP (E+
0 ) by arguing in

the same manner. For almost every s ⩽ t we have Es = E+
s , hence we obtain P (Et) ⩽

etP (E+
0 ). Finally, by Theorem 3.3.13 we have P (E+

0 ) ⩽ P (E0).

3.3.3 Formulation using 1-Dirichlet energy

Similar to the interior case, there is another variational principle in terms of a 1-
Dirichlet type energy. The presence of an obstacle results in a boundary term:

J̃u(v) =

∫
Ω

(
|∇v|+ v|∇u|

)
−
∫
∂∗Ω

v∂ dHn−1. (3.3.9)

where we use v∂ to denote the BV boundary trace of v. The choice of sign in the boundary
term becomes manifest in the proof of the equivalence theorem.

We show the equivalence between the main Definition 3.3.2 and the definition using
this energy. This is in analogy with Remark 2.1.3. The proofs in this section are mostly
technical; the reader is recommended to to skip them.

Definition 3.3.15. Let Ω ⊂ M be a locally Lipschitz domain. For a function u ∈
Liploc(Ω), a domain K ⋐M and another function v ∈ Liploc(Ω), set the energy

J̃Ku (v) =


∫
Ω∩K

(
|∇v|+ v|∇u|

)
−
∫
∂∗Ω∩K

v∂ dHn−1 (if v ∈ BV (Ω ∩K),

v|∇u| ∈ L1(Ω ∩K)),

undefined (otherwise).
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We say that u locally minimizes J̃u (resp. minimizes from below, from above), if for all
v ∈ Liploc(Ω) (resp. for all v ⩽ u, v ⩾ u) and any domain K satisfying {u ̸= v} ⋐ K ⋐M ,
we have

J̃Ku (u) ⩽ J̃Ku (v) (3.3.10)

whenever both sides are defined.

At this point, it is important to recall Lemma 2.2.2(i) and 3.2.3, where we have shown
that u ∈ BV(Ω ∩ K) and u|∇u| ∈ L1(Ω ∩ K) for all K ⋐ M whenever u is an interior

subsolution of IMCF(((Ω))), and thus, the energy J̃Ku (u) is always defined.

Theorem 3.3.16 (outer obstacle II).
Let Ω ⊂ M be a locally Lipschitz domain, and u ∈ Liploc(Ω). Then u is a solution

(resp. subsolution) of IMCF(((Ω)))+OBS(((∂Ω))) if and only if u locally minimizes J̃u (resp.

locally minimizes J̃u from below). If we further assume

u ∈ BVloc(Ω), |u| |∇u| ∈ L1
loc(Ω), (3.3.11)

then u is a supersolution if and only if u locally minimizes J̃u from above.

Proof. The proof is a direct generalization of the interior case [53, Lemma 1.1].
(1) Suppose u is a weak (sub-, super-) solution of IMCF(((Ω)))+OBS(((∂Ω))). By Lemma 2.2.2

and 3.2.3 or by our assumption (3.3.11), we have u ∈ BVloc(Ω) and |u| |∇u| ∈ L1
loc(Ω)

in either case. Let v ∈ Liploc(Ω) be a competitor (with additionally v ⩽ u or v ⩾ u for

the case of subsolution or supersolution), with {u ̸= v} ⋐ K ⋐ M and J̃Ku (v) is defined.
For b ∈ R, we set vb = min{v, b} and truncate the integrals (we suppress the boundary
measure dHn−1): ∫

Ω∩K
|∇v| =

∫
{v>b}∩K

|∇v|+
∫
Ω∩K
|∇vb|, (3.3.12)∫

∂∗Ω∩K
v∂ =

∫
∂∗Ω∩{v∂>b}∩K

(v − b)∂ + bHn−1
(
∂∗Ω ∩K

)
−
∫
∂∗Ω∩K

(b− vb)∂, (3.3.13)∫
Ω∩K

v|∇u| =
∫
{v>b}∩K

(v − b)|∇u|+ b

∫
Ω∩K
|∇u| −

∫
Ω∩K

(b− vb)|∇u|. (3.3.14)

The first term on the right hand sides converge to 0 as b → +∞, by our integrability
assumption for v. Then by Cavalieri’s formula and the coarea formula for BV functions
(see [39, Section 5.4, 5.5]), we have∫

Ω∩K

(
|∇vb| − (b− vb)|∇u|

)
+

∫
∂∗Ω∩K

(b− vb)∂ =

∫ b

−∞
J̃Ku (Et(v)) dt.

As a result,

J̃Ku (v) = o(1) +

∫ b

−∞
J̃Ku (Et(v)) dt+ b

∫
Ω∩K
|∇u| − bHn−1

(
∂∗Ω ∩K

)
. (3.3.15)

Decomposing J̃Ku (u) in the same manner, applying Definition 3.3.2, cancelling the common

terms in (3.3.15) and finally taking b→∞, we find that J̃Ku (u) ⩽ J̃Ku (v).

(2) Suppose u satisfies (3.3.11) and locally minimizes J̃u from above; let us verify the

supersolution condition: J̃Ku (Et(u)) ⩽ J̃Ku (E) for all E ⊂ Et with Et \ E ⋐ K ⋐ M .
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The proof here differs only slightly from [53, Lemma 1.1]. By selecting a J̃Ku –minimizer

among all the sets F with E ⊂ F ⊂ Et, we may assume that J̃Ku (E) ⩽ J̃Ku (E ′) for all
E ⊂ E ′ ⊂ Et. Next, we define the function

v =

{
t on Et \ E,
u elsewhere.

It is easy to see that u ⩽ v ⩽ max{u, t} and {u ̸= v} ⋐ K. Writing v = u+ (t− u)χEt\E,
we find v ∈ BVloc(Ω) and |v| |∇u| ∈ L1

loc(Ω) by (3.3.11). Note that Es(v) = Es(u)∩E for
all s ⩽ t, and therefore we have

J̃Ku (Es(v)) ⩽ J̃Ku (Es(u)) + J̃Ku (E)− J̃Ku (Es(v) ∪ E) ⩽ J̃Ku (Es(u)) (3.3.16)

By the standard approximation results (see [4, Theorem 3.9 and 3.88]), there exist non-
negative functions wi ∈ C∞(Ω) ∩ BV(Ω) supported in K, such that

wi
L1

−→ (v − u), ∥Dwi∥(Ω)→ ∥D(v − u)∥(Ω),

∫
∂∗Ω

w∂i →
∫
∂∗Ω

(v∂ − u∂).

Since |∇u| ∈ L∞
loc(Ω), then with a slight modification of [4, Theorem 3.9] we can achieve∫

Ω

wi|∇u| →
∫
Ω

(v − u)|∇u|.

Utilizing the fact J̃Ku (u) ⩽ J̃Ku (u+ wi) from our hypotheses, then taking i→∞, we find

that J̃Ku (u) ⩽ J̃Ku (v) in the BV sense. Truncating the integrals at an arbitrary b > t as
in (3.3.12)∼ (3.3.14), and noting that u = v ∈ Liploc({u > t}), we find that∫ t

−∞
J̃Ku (Es(u)) ds ⩽

∫ t

−∞
J̃Ku (Es(v)) ds. (3.3.17)

The combination (3.3.16) (3.3.17) implies J̃Ku (Es(v)) = J̃Ku (Es(u)) for a.e. s < t. This

implies J̃Ku (Es(u) ∪ E) ⩽ J̃Ku (E), and taking s↗ t implies J̃Ku (Et(u)) ⩽ J̃Ku (E).
This argument verifies the supersolution case. For subsolutions we argue in the same

manner, where the integrability condition for u comes from Lemma 2.2.2 and 3.2.3. The
case of solution follows by combining the supersolution and subsolution case.

3.3.4 Boundary orthogonality of calibration

Recall from Subsection 2.3 the notion of a calibrated solution: there exists a mea-
surable vector field ν satisfying |ν| ⩽ 1 and ν · ∇u = |∇u| almost everywhere, and
div(ν) = |∇u| weakly in Ω. Moreover, recall by Lemma 2.2.2(i) that |∇u| ∈ L1

loc(Ω). Here
we show that if ⟨ν, νΩ⟩ = 1 on ∂Ω in the trace sense, then u solves IMCF(((Ω)))+OBS(((∂Ω))).

Let us first introduce the notion of boundary trace. Suppose Ω is locally Lipschitz.
Define the space

X =
{
ν ∈ L∞(TΩ) : div(ν) ∈ L1

loc(Ω)
}
.

There is a well-defined operator ν 7→ [ν · νΩ] from X to L∞(∂Ω,Hn−1), called the normal
trace, with the following properties:

(i) for all ν ∈ X we have ∥[ν · νΩ]∥∞ ⩽ ∥ν∥∞;
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(ii) for Hn−1-a.e. x ∈ ∂Ω we have

[ν · νΩ](x) = − n

|Bn−1|
lim
r→0

1

rn

∫
Ω∩B(x,r)

⟨ν,∇dx⟩, (3.3.18)

where dx = d(·, x) is the distance function from x. In particular, if Ω is a C1 domain and
ν ∈ C1(Ω), then [ν · νΩ] = ν · νΩ in the classical sense;

(iii) the following divergence formula holds: for φ ∈ BV(Ω) ∩ Liploc(Ω) with spt(φ) ⋐
M and φ div(ν) ∈ L1(Ω), we have∫

Ω

φ div(ν) + ⟨ν,∇φ⟩ =

∫
∂Ω

[ν · νΩ]φ∂ dHn−1. (3.3.19)

Properties (i)(iii) can be found (as the Riemannian and local version) in [10, Section
1]. Property (ii) is proved in [100, Theorem 4.4]. The formula (3.3.19) is proved in [10,
Theorem 1.9] assuming φ ∈ BV(Ω) ∩ Liploc(Ω) ∩ L∞, but what stated here follows by a
truncation argument. The divergence formula in fact holds in a much broader sense: it
suffices to assume that div(ν) is a Radon measure and φ ∈ BV(Ω) has bounded support.
In this case, the second term in (3.3.19) needs to be replaced with an abstract pairing.
We refer the reader to [10, 27] for more details; the current formulation is enough for our
purpose.

Lemma 3.3.17. Suppose Ω ⊂ M is a locally Lipschitz, and u solves IMCF(((Ω))) and is
calibrated by ν. If [ν · νΩ] = 1 Hn−1-a.e. on ∂Ω, then u solves IMCF(((Ω)))+OBS(((∂Ω))).

Combining Lemma 3.3.17, (3.3.18), and an elementary computation, we obtain the
following convenient criterion:

Corollary 3.3.18. Let Ω, u, ν be as in Lemma 3.3.17. If for Hn−1-almost every x ∈ ∂∗Ω,
and in some geodesic normal coordinate near x, we have

lim
r→0

ess sup
{∣∣ν(y)− νΩ(x)

∣∣ : y ∈ Ω ∩B(x, r)
}

= 0, (3.3.20)

then u solves IMCF(((Ω)))+OBS(((∂Ω))).

Proof of Lemma 3.3.17. Since div(ν) = |∇u|, and u ∈ BVloc(Ω) due to Lemma 2.2.2, we
indeed have ν ∈ X. Let v ∈ Liploc(Ω) be a competitor, such that {u ̸= v} ⋐ K ⋐M and

J̃Ku (v) is defined. Applying (3.3.19) with the function φ = v − u, we obtain∫
∂Ω

(v∂ − u∂) dHn−1 =

∫
∂Ω

[ν · νΩ]φ∂ dHn−1 =

∫
Ω

(v − u)|∇u|+
∫
Ω

ν · (∇v −∇u)

⩽
∫
Ω

(v − u)|∇u|+
∫
Ω

(
|∇v| − |∇u|

)
,

since ν · ∇u = |∇u| a.e.. This exactly implies J̃Ku (u) ⩽ J̃Ku (v).

3.3.5 A weak maximum principle

We extend the interior maximum principle (Theorem 2.1.12) to a version with the
presence of obstacle.
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Theorem 3.3.19 (weak maximum principle).
Given Ω ⊂M a locally Lipschitz domain. Let u, v ∈ Liploc(Ω) be respectively a solution

and subsolution of IMCF(((Ω)))+OBS(((∂Ω))). If {u < v} ⋐M , and

inf
Ω∩K

u > −∞ for some K with {u < v} ⋐ K ⋐M, (3.3.21)

then u ⩾ v in Ω.

In complement with Theorem 3.3.8, this has the following consequence: the solution
of IVP(((Ω;E0)))+OBS(((∂Ω))), if it exists, is maximal among all solutions of IVP(((Ω;E0))):

Corollary 3.3.20 (maximality).
Given a Lipschitz domain Ω ⋐M and C1,1 domains E0 ⊂ E ′

0 ⋐ Ω. Suppose
(1) u ∈ Liploc(Ω) is a solution of IVP(((Ω;E0)))+OBS(((∂Ω))),
(2) v ∈ Liploc(Ω) is a subsolution of IVP(((Ω;E ′

0))).
Then u ⩾ v in Ω \E ′

0. In particular, the weak solution of IVP(((Ω;E0)))+OBS(((∂Ω))) is unique
up to equivalence (if it exists).

Proof. For any ε > 0, the functions u + ε and v are respectively a solution (by Defini-
tion 3.3.6 and restriction) and subsolution (by Theorem 3.3.8) of IMCF(((Ω\E ′

0)))+OBS(((∂Ω))).
Moreover, we have {v > u + ε} ⋐ M \ E ′

0. Then we have u ⩾ v in Ω \ E ′
0, by Theorem

3.3.19 and by taking ε→ 0. Finally, the uniqueness follows from maximality.

Let us come back to Theorem 3.3.19. It is important to note that the lower bound
(3.3.21) is not removable. To see this, recall the nephroid soliton in Example 1.4.4. Let
u be the corresponding level set function, and let us restrict to Ω = {u < 0} ⋐ R2. Now
u is a solution of IMCF(((Ω)))+OBS(((∂Ω))) which is unbounded from below due to the presense
of the pole. Setting v = u+ 1, we have {u < v} ⋐ R2 but obviously u ⩾̸ v.

The proof here is a minor adaptation of [53, Theorem 2.2]. We assume u to be an
exact solution here, but it can be checked that the proof works when u is a supersolution
with enough integrability u ∈ BV (Ω ∩K), u|∇u| ∈ L1(Ω ∩K). These assumptions can
actually be removed, by invoking the original Definition 3.3.2 (hence avoiding Theorem

3.3.16). By comparing the energies J̃u(Et(uε)) ⩽ J̃u(Et(uε) ∩ Et(v)) and J̃v(Et(v)) ⩽
J̃v(Et(v) ∪ Et(uε)), and integrating over t, we can recover the imtermediate inequality
(3.3.24). The other inequality (3.3.25) can similarly be obtained by comparing among
various sub-level sets. For technical simplicity, we do not pursue proving the case with
the widest possible generality.

Proof of Theorem 3.3.19.
Adding a common constant to u, v, we may assume that u|K ⩾ 0. Replacing v with

min{v, T} (which is still a weak subsolution of IMCF(((Ω)))+OBS(((∂Ω))) by Remark 2.1.4(iv)
and Theorem 3.3.8), and taking T → +∞, we may assume that v ⩽ T for some T > 0.
Thus we are reduced to the case u ⩾ 0, v ⩽ T . For a constant ε > 0 we set uε = u

1−ε .
Then it is sufficient to show that uε ⩾ v. Suppose that this fails to hold. Then we may
increase u by an appropriate constant, and assume that uε > v − ε but {uε < v} ≠ ∅.

From Theorem 3.3.16, it is not hard to see that uε satisfies a strict minimizing condition∫ (
|∇uε| − |∇w|

)
−
∫
∂∗Ω

(u∂ε − w∂) ⩽ (1− ε)
∫

(w − uε)|∇uε|
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for all competitors w ⩾ uε such that {w ̸= uε} ⋐ M and J̃Ku (w) is defined. Setting
w = max{uε, v} (which is a valid competitor), we obtain∫

{v>uε}

(
|∇uε| − |∇v|

)
−
∫
∂∗Ω∩{v∂>u∂ε }

(u∂ε − v∂) ⩽ (1− ε)
∫
{v>uε}

(v − uε)|∇uε|. (3.3.22)

Testing the subsolution property of v with the competitor min{uε, v}, we find that∫
{uε<v}

(
|∇v| − |∇uε|

)
−
∫
∂∗Ω∩{u∂ε<v∂}

(v∂ − u∂ε ) ⩽
∫
{uε<v}

(uε − v)|∇v|. (3.3.23)

Adding (3.3.22) (3.3.23) and canceling the common terms, we obtain∫
{v>uε}

(v − uε)|∇v| ⩽ (1− ε)
∫
{v>uε}

(v − uε)|∇uε|. (3.3.24)

Next, for s ⩾ 0 we compare J̃Kuε(uε) ⩽ J̃Kuε(max{uε, v − s}) to obtain∫
{v−s>uε}

(
|∇uε| − |∇v|

)
−
∫
∂∗Ω∩{v∂−s>u∂ε }

(u∂ε − v∂ + s)

⩽
∫
{v−s>uε}

(v − s− uε)|∇uε|.

The boundary term has the favorable sign and thus can be discarded. Integrating this
inequality over 0 ⩽ s < ∞ (note that the integrand is nonzero only within a bounded
interval of s), by Fubini’s theorem we obtain

0 ⩽
∫
{v>uε}

(v − uε)
(
|∇v| − |∇uε|

)
+

1

2
(v − uε)2|∇uε|. (3.3.25)

Combining (3.3.24) (3.3.25) we have

ε

∫
{v>uε}

(v − uε)|∇uε| ⩽
1

2

∫
{v>uε}

(v − uε)2|∇uε|. (3.3.26)

Recall our reduction hypothesis at the beginning, that uε > v − ε and {v > u − ε} ≠ ∅.
Then (3.3.26) implies that uε, hence u as well, is constant on {v > uε}. Then (3.3.24)
implies in turn that v is constant on {v > uε}. Then the only possibility is that {v > uε}
is a precompact connected component of Ω. However, this contradicts the supersolution
property of u, see Remark 3.3.5(v). Thus this completes the proof.

3.4 Liouville theorems on the half space

The aim of this section is to establish Theorem 3.4.1 and 3.4.3. They are Liouville
theorems in the half space, for weak solutions that respect the boundary obstacle and
respectively a “soft obstacle” respectively. These results are applied in the main exis-
tence theorem (see Section 6) in showing that there are only trivial limits in the blow-up
procedures.

We adopt the following notations: for a point x = (x1, x2, · · · , xn) ∈ Rn, we denote
x′ = (x1, · · · , xn−1) and write x = (x′, xn). Moreover, set en = (0, · · · , 0, 1).
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Theorem 3.4.1. Let Ω = {xn < 0} ⊂ Rn, and suppose that u ∈ Liploc(Ω) is a solution
of IMCF(((Ω)))+OBS(((∂Ω))). Moreover, suppose

inf
Ω

(u) > −∞ and |∇u(x)| ⩽ C

|xn|
for a.e. x ∈ Ω. (3.4.1)

Then u must be constant.

The condition infΩ(u) > −∞ cannot be removed, due to the Poisson kernel type
Example 1.4.4. In the proof we need the following direct extension of Lemma 2.2.1.

Lemma 3.4.2. Suppose Ω is a locally Lipschitz domain, and u ∈ Liploc(Ω) is a super-
solution of IMCF(((Ω)))+OBS(((∂Ω))), such that infΩ(u) = t0 > −∞. Suppose F has finite
perimeter, and K is a domain, such that F ⋐ K ⋐M . Then we have

P (Et;K) ⩽ P (Et \ F ;K) +

∫ t

t0

et−sP (F ;Es) ds. (3.4.2)

Proof. By Lemma 2.2.2(ii), both J̃Ku (Et) and J̃Ku (Et \ F ) are finite. From the fact

J̃Ku (Et) ⩽ J̃Ku (Et \ F ) and the coarea formula, we see that

P (Et;K) ⩽ P (Et \ F ;K) +

∫ t

t0

Hn−1
(
∂∗Es ∩ Et ∩ F ∩ Ω

)
ds

⩽ P (Et \ F ;K) +

∫ t

t0

Hn−1
(
∂∗Es ∩ F

)
ds.

The remaining proof is the same as in Lemma 2.2.1.

Proof of Theorem 3.4.1.
Shifting u by a constant, we may assume infΩ(u) = 0. Thus we are aimed at showing

u ≡ 0. We separate the proof into two cases according to whether the level sets become
flat when t ↘ 0. If they do become flat (Case (i)), then we use a barrier argument.
If they are uniformly non-flat (Case (ii)), then we use a blow-up argument to obtain a
contradiction.

Case (i): suppose there exist sequences ti ↘ 0 and θi ↘ 0, such that

ess inf
∂∗Eti

⟨νEti , en⟩ ⩾ cos θi. (3.4.3)

For this case we use a barrier argument. Suppose that u is not identically zero, so there
exists x0 ∈ Ω with u(x0) > 0. We may remove finitely many terms in the sequence and
assume u(x0) > ti for all i. By continuity and infΩ(u) = 0, for each i there exists a point
yi = y′i + yi,nen (yi,n < 0) that lies on ∂∗Eti . By Lemma A.6.3, (3.4.3), and Lemma 2.1.6,
we have

Eti ⊃
{

(x′, xn) : xn < yi,n −
∣∣x′ − y′i∣∣ tan θi

}
. (3.4.4)

For a constant N > 1, consider the family of sets

Ft = B
(
y′i +Nyi,nen, e

t
n−1 (N − 1)|yi,n| cos θi

)
,

whose boundary smoothly solves the IMCF. By the interior maximum principle and the
fact that F0 ⊂ Eti , we have

Ft ⊂ Et+ti whenever Ft ⋐ Ω.
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The condition Ft ⋐ Ω holds precisely when t < T := (n − 1) log
(

N
(N−1) cos θi

)
. Taking

t↗ T , we obtain

Eti+T ⊃ B
(
y′i +Nyi,nen, N |yi,n|

)
.

Finally, taking N → ∞ and then i → ∞, we find that Et ⊃ {xn < 0} for any t > 0.
This implies u ≡ 0.

Case (ii): suppose the hypothesis of case (i) fails. This implies that we can find a
constant θ0 < 1, a sequence of times ti ↘ 0, and a sequence of points yi = (y′i, yi,n) ∈ ∂∗Eti ,
with ⟨νEti (yi), en⟩ ⩽ cos θ0. The points yi are necessarily contained in the interior of Ω
(otherwise νEti (yi) = νΩ = en). Consider the rescaled sets

Fi =
1

|yi,n|
(Eti − y′i) ⊂ Ω,

where it clearly holds −en ∈ ∂∗Fi and ⟨νFi(−en), en⟩ ⩽ cos θ0. We investigate the min-
imizing properties of Fi: by Theorem 3.3.12, each Fi is locally outward minimizing in
Ω, hence locally outward minimizing in Rn, by direct verification. On the other hand,
by Lemma 3.4.2 and the scale invariance of (3.4.2), we obtain the inward-minimizing
property

P (Fi;K) ⩽ P (Fi \G;K) + (eti − 1)P (G) ∀G ⋐ K ⋐ Rn.

Taking i → ∞, a subsequence of Fi converges locally to some F∞ ⊂ Ω. Taking limit
of the minimizing properties stated above, and by a standard set replacing argument, it
follows that F∞ is locally perimeter-minimizing in Rn.

The gradient estimate in (3.4.1) and energy comparison implies the following: for all
x ∈ Ω and any competitor set E with E∆Et ⋐ B(x, |xn|/2), we have

P
(
Et;B(x,

|xn|
2

)
)
⩾ P

(
E;B(x,

|xn|
2

)
)

+
C

|xn|
∣∣E∆Et

∣∣.
Rescaling this, we see that Fi satisfies the condition

P
(
Fi;B(−en,

1

2
)
)
⩾ P

(
F ;B(−en,

1

2
)
)

+ C
∣∣F∆Fi

∣∣,
for all F with F∆Fi ⋐ B(−en, 1/2). Thus Fi are uniform almost perimeter-minimizers in
B(−en, 1/2), in the sense stated in Section A.2. Then we apply Theorem A.2.2 to obtain
−en ∈ spt |µF∞|. Recalling from above that F∞ is locally perimeter-minimizing in Rn,
we then apply Lemma A.6.4 to obtain F∞ =

{
xn < −1

}
. Finally, by Theorem A.2.2(iii)

we have the convergence of normal vectors νFi(−en)→ νF∞(−en) = en, contradicting our
hypothesis. This proves the theorem.

We also establish the following approximate Liouville theorem, where the obstacle
{xn = 0} is replaced by a “soft obstacle”, represented by the weight function ψ(xn)
unbounded near xn = 1. See Section 3.2 for the definition of weighted weak solutions.

Theorem 3.4.3. Fix a smooth function ψ : (−∞, 1)→ [0,∞) that satisfies

� ψ|(−∞,0] ≡ 0,
� ψ > 0, ψ′ > 0, ψ′′ > 0, ψ′′′ > 0 on (0, 1),
� limx→1 ψ(x) = +∞.
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Let Ω = {xn < 1} ⊂ Rn, and u ∈ Liploc(Ω) be a weak solution of the weighted IMCF

div
(
eψ(xn)

∇u
|∇u|

)
= eψ(xn)|∇u| (3.4.5)

in Ω. Moreover, assume there is a constant C so that
(1) u ⩾ ψ(xn)− C in Ω (in particular, it holds infΩ(u) > −∞),
(2) |∇u(x)| ⩽ C

|xn| for a.e. x ∈ {xn < 0}.
Then u(x′, xn) = ψ(xn)− C ′ for some other constant C ′.

Let us remark that condition (1) is not removable. Consider the weight function
ψ(x) = (n−1) log 1

1−x for x > 0 and ψ(x) = 0 for x ⩽ 0 (the non-smoothness of ψ does not
really matter). By Lemma 3.2.1, the weighted IMCF is equivalent to the usual weak IMCF
in the metric g′ = e2ψ(xn)/(n−1)g, which is hyperbolic in {0 < xn < 1}. Without condition
(1), the following solution is a counterexample: the solution starts from initial the horoball
E0 = {xn < 0}, then instantly jumps to the half-space E+

0 = {xn < 1−
√

1− |x′|2}, and
then continue to evolve by Σt =

{
x : d(x,E+

0 ) = arccosh et/(n−1)
}

. See Figure 3.6.

xn = 0

xn = 1

E0 = {u < 0}

u ≡ 0 −−→

→→ →
1/H – flow

Figure 3.6: Counterexample of Theorem 3.4.3 without condition (1).

Proof of Theorem 3.4.3.
Shifting u by a constant, we may assume infΩ(u) = 0. We are aimed at proving

u(x′, xn) = ψ(xn). The proof consists of three steps: we first show u ⩾ ψ(xn) using outer
barriers, and next show that u = 0 on {xn ⩽ 0} by arguing similarly as in Theorem 3.4.1,
and finally prove u ⩽ ψ(xn) using inner barriers.

Step 1. We show that u ⩾ ψ(xn). The following fact can be directly verified: if Σt

are graphs of functions f = f(·, t) over Rn−1, then Σt is a solution (resp. subsolution,
supersolution) of the smooth weighted IMCF ∂Σt

∂t
= ν

H+∂ψ/∂ν
if and only if

∂f

∂t

(
− div

∇f√
1 + |∇f |2

+
ψ′(f)√

1 + |∇f |2
)

= (resp. ⩾ ,⩽ )
√

1 + |∇f |2. (3.4.6)

For µ > 0 and R ⩾ 4, consider the function

f(x′, t) = (1 + µ)ψ−1(t) + µ+R−
√
R2 − |x′|2, (3.4.7)

where ψ−1 is the inverse of ψ. Note that f is smooth in the region {(x′, t) ∈ Rn−1×(0,∞) :
f(x′, t) < 1}. We claim that there exists R0 depending on ψ and µ, such that f is a
subsolution of (3.4.6) whenever R ⩾ R0, t > 0 and f < 1. To verify this, we compute

∂f

∂t
=

1 + µ

ψ′(ψ−1(t))
and div

∇f√
1 + |∇f |2

=
n− 1

R
. (3.4.8)
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To evaluate the second term in (3.4.6), we note that f < 1 implies R−
√
R2 − |x′|2 < 1,

which further implies |x′|2 ⩽ 2R− 1. Therefore, by direct estimation

1 + |∇f |2 =
R2

R2 − |x′|2
⩽

R2

(R− 1)2
⩽ 1 +

4

R
whenever f < 1, (3.4.9)

where we used R ⩾ 4. Moreover, using the convexity of ψ and ψ′ we have

ψ′(f) ⩾ ψ′(ψ−1(t) +
µ

2

)
+ ψ′′(ψ−1(t) +

µ

2

)
·
(
f − ψ−1(t)− µ

2

)
⩾ ψ′(ψ−1(t)) + ψ′′(

µ

2
) · µ

2
.

(3.4.10)

Combining (3.4.8) (3.4.9) (3.4.10), we obtain

∂f

∂t

(
− div

∇f√
1 + |∇f |2

+
ψ′(f)√

1 + |∇f |2

)
⩾

1 + µ

ψ′(ψ−1(t))
·
(
− n− 1

R
+
ψ′(ψ−1(t)) + (µ/2)ψ′′(µ/2)√

1 + 4/R

)
.

As a result, if we choose R0 sufficiently large so that

µ

2
ψ′′(

µ

2
) >

√
1 +

4

R
· n− 1

R
and

1 + µ√
1 + 4/R

>

√
1 +

4

R
for all R ⩾ R0,

then combined with (3.4.9), it follows that f is a strict subsolution of (3.4.6) whenever
t > 0 and f < 1. Switching to the level set description, we find that the function

u(x′, xn) = ψ
( 1

1 + µ

(
xn − µ−R +

√
R− |x′|2

))
,

defined such that
{
u = t

}
= graph

(
f(·, t)

)
, satisfies the subsolution condition

div
(
eψ
∇u
|∇u|

)
> eψ|∇u|

in the region Ω′ =
{
µ+R−

√
R2 − |x′|2 < xn < 1

}
⊂ Ω.

For ε > 0, we apply the interior maximum principle (Theorem 2.1.12) to the functions
u′ = u+ ε and u. By our hypothesis we have u ⩾ max{0, ψ(xn)− C}. Hence

u′(x) < u(x) ⇒ ψ(xn)− C < ψ
( xn

1 + µ

)
⇒ xn < C ′ for all x ∈ Ω′,

where C ′ < 1 is a constant depending only on C, µ, ψ. On the other hand, u′(x) < u(x)
implies u(x) > ε, therefore the closure of {u′ < u} does not intersect {xn = µ + R −√
R2 − |x′|2}. As a result, we have {u′ < u} ⋐ Ω′. By Lemma 3.2.1(3) and Theorem

2.1.12, we obtain u′ ⩾ u. Taking ε→ 0, R→∞ and then µ→ 0, we obtain u ⩾ ψ(xn).

Step 2. we show that u = 0 on {xn ⩽ 0}, using similar methods as in Theorem 3.4.1.
Due to the presence of weight function, the discussion here is more complicated. Recall
that we have assumed inf(u) = 0 and showed that Et ⊂ {xn < ψ−1(t)} for all t > 0.

Case 2(i): suppose for any ε > 0, there exists δ > 0 such that ∂∗Et ⊂ {x ⩾ −ε} for all
0 < t ⩽ δ. Thus for each t ∈ (0, δ] there are only two possibilities: either Et ⊃ {xn < −ε},
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or Et ⊂ {−ε < xn < ψ−1(t)}. We claim that latter case never occurs. Once this is proved,
we have {u ⩽ 0} ⊃ {xn < −ε}, which by taking ε→ 0 proves the goal of Step 2. It remains
to prove our claim. Suppose we have Et ⊂ {−ε < x < ψ−1(t)} for some ε, δ and t ∈ (0, δ].
Let π : (x′, xn) 7→ x′ be the projection map. Note that P

(
Et;A× R

)
⩾ Ln−1(π(Et) ∩ A)

for any open set A ⊂ Rn−1. Lemma 2.2.1 is easily generalized to the weighted case, which
implies that∫

∂∗Et∩K
eψ dHn−1 ⩽

∫
∂∗(Et\F )∩K

eψ dHn−1 + (et − 1)

∫
∂∗F∩Et

eψ dHn−1, (3.4.11)

whenever F ⋐ K ⋐ Ω. If Hn−1(∂∗Et ∩ ∂∗F ) = 0 and F = F (1), then (3.4.11) is reduced
to ∫

∂∗Et∩F
eψ dHn−1 ⩽ et

∫
∂∗F∩Et

eψ dHn−1. (3.4.12)

Since eψ ⩾ 1 everywhere and eψ ⩽ et in Et, we have

P (Et;F ) ⩽ e2tP (F ;Et). (3.4.13)

Now for a radius R > 0 we choose F = B′(0, R) × (−1/2, 1/2), where B′ denotes open
balls in Rn−1. For almost every R, (3.4.13) implies

Ln−1(π(Et) ∩B′(0, R)) ⩽ P
(
Et;B

′(0, R)× R
)

= P (Et;F ) ⩽ e2tP (F ;Et)

⩽ e2t
(
ε+ ψ−1(t)

)
Hn−2(∂B′(0, R) ∩ π(Et)).

Denoting f(R) = Ln−1(π(Et) ∩ B′(0, R)), thus f(R) ⩽ e2t
(
ε + ψ−1(t)

)
f ′(R). Since

infΩ(u) = 0, we have f(R) > 0 for some R, therefore f(R) is exponentially growing
as R → ∞. This is impossible. From the setups made above, this proves the desired
result for Case 2(i).

For the rest of Step 2, we may assume the contrary of Case 2(i): that there is a fixed
ε > 0 and a sequence of times ti → 0, such that ∂∗Eti ∩ {xn < −ε} ≠ ∅ for all i.

Case 2(ii): assume that there are angles θi → 0, such that for each i it holds

ess inf
∂∗Eti∩{xn<−ε}

⟨νEti , en⟩ ⩾ cos θi.

Then arguing similarly as in Case (i) of Theorem 3.4.1, we have Et ⊃ {xn < 0} for all
t > 0. This proves the desired result for Step 2.

Case 2(iii): suppose the hypothesis of Case 2(ii) does not hold. Then passing to a
subsequence, there is a constant θ0 > 0 and points yi = (y′i, yi,n) ∈ ∂∗Eti∩{xn < −ε}, such
that ⟨νEti (yi), en⟩ ⩽ cos θ0. We argue that this is impossible. For convenience, we denote
Ei = Eti . Recall from step 1 that Ei ⊂ {xn < ψ−1(ti)}. We start with investigating the
minimizing properties of Ei.

1. Ei are local outward minimizers of the weighted perimeter E 7→
∫
∂∗E

eψ dHn−1

in {xn < 1}, by Lemma 3.2.1(iii). This immediately implies that Ei are local outward
minimizers of E 7→

∫
∂∗E

emin{ψ,ti} dHn−1 in
{
xn < ψ−1(ti)

}
. Then by direct verification,

Ei locally outward minimizes the same functional E 7→
∫
∂∗E

emin{ψ,ti} dHn−1 in Rn.
2. The inward minimizing effect of Ei is given by (3.4.11). Since all the integrals

in (3.4.11) occur inside the set {ψ ⩽ ti}, it makes no difference to replace each ψ by
min{ψ, ti}.
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Combining the inward and outward minimizing properties, we conclude that∫
∂∗Ei∩K

emin{ψ,ti} dHn−1 ⩽
∫
∂∗F∩K

emin{ψ,ti} dHn−1

+ (eti − 1)

∫
∂∗(Ei\F )

emin{ψ,ti} dHn−1

whenever F∆Ei ⋐ K ⋐ Rn. This directly implies

P (Ei;K) ⩽ etiP (F ;K) + eti(eti − 1)P (Ei \ F ).

Next, consider the rescaled sets Fi = (Ei − y′i)/|yi,n|. It follows that Fi ⊂ {xn < 1/ε},
−en ∈ ∂∗Fi, and ⟨νFi(−en), en⟩ ⩽ cos θ0, and Fi satisfy the minimizing property

P (Fi;K) ⩽ etiP (F ;K) + eti(eti − 1)P (Fi \ F ) (3.4.14)

whenever F∆Fi ⋐ K ⋐ Rn. Moreover, since ψi = 0 in {xn < 0}, and by the gradient
estimate |∇u| ⩽ C/|xn|, we have the uniform almost-minimizing property

P
(
Fi;B(−en,

1

2
)
)
⩽ P

(
F ;B(−en,

1

2
)
)

+ C|F∆Fi| (3.4.15)

whenever F∆Fi ⋐ B(−en, 12).
We are in a position to pass to the limit: there is a subsequence of Fi that converge

to a set F∞ in L1
loc. By (3.4.15) and Theorem A.2.2(ii) we have −en ∈ ∂∗F∞. By

(3.4.14) and the fact ti → 0 and the standard set replacing argument, the limit F∞ locally
minimizes the perimeter in Rn. By Lemma A.6.4 and the fact F∞ ⊂ {xn < 1/ε}, we have
F∞ = {xn < −1}. Finally, by Theorem A.2.2(iii) we have convergence of normal vectors
νFi(−en)→ νF∞(−en) = en, contradicting our hypothesis. This completes step 2.

Step 3. We have shown that u ⩾ ψ(xn) and u = 0 on {xn < 0}. In this step we use
inner barriers to show that u ⩽ ψ(xn), which completes the proof of the theorem. For
constants µ≪ 1, R≫ 1 and for t > 0, we consider the function

f(x′, t) = (1− µ)

∫ t

0

ds

ψ′(ψ−1(s)) + (n− 1)/R
−R +

√
R2 − |x′|2.

We claim that f is a supersolution of (3.4.6) whenever t > 0 and f > 0. Note that
f ⩽ (1− µ)

∫ t
0

ds
ψ′(ψ−1(s))

< (1− µ)ψ−1(t). In particular, f < 1 always holds. To verify the

supersolution property, according to (3.4.6) we compute

∂f

∂t
=

1− µ
ψ′(ψ−1(t)) + (n− 1)/R

and div
( ∇f√

1 + |∇f |2
)

= −n− 1

R
.

By the convexity of ψ, we have ψ′(f) ⩽ ψ′(ψ−1(t)). Therefore,

∂f

∂t

(
− div

∇f√
1 + |∇f |2

+
ψ′(f)√

1 + |∇f |2

)
⩽

1− µ
ψ′(ψ−1(t)) + (n− 1)/R

·
(n− 1

R
+ ψ′(ψ−1(t))

)
= 1− µ <

√
1 + |∇f |2.
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Thus f is a supersolution of (3.4.6).
Consider the unique positive function u on {0 < xn < 1}, such that Et(u) =

{
(x′, xn) :

0 < xn < f(x′, t)
}

for all t > 0. Then u is a smooth supersolution of IMCF in the region
Ω′ := {0 < xn < 1, u < ∞}. For ε > 0 we wish to compare u with the function u + ε.
Assembling the facts: u = 0 on {xn = 0}, and {u <∞} ⊂

{
xn < 1−µ−R+

√
R2 − |x′|2

}
,

and u ∈ Liploc({xn < 1}), we conclude that {u > u + ε} ⋐ Ω′. By Lemma 3.2.1 (3) and
Theorem 2.1.12, we obtain u ⩽ u + ε. Taking ε → 0 and then R → ∞ and then µ → 0,
we eventually obtain u ⩽ ψ(xn).

3.5 Parabolic estimates near smooth obstacles

In this section, we compute several parabolic evolution equations for the smooth IMCF
near a smooth obstacle. The main results are Lemma 3.5.4 and 3.5.5.

The aim is to show the following: if Σt evolves under the IMCF in a smooth domain Ω,
such that (1) νΣt is approximately equal to νΩ on ∂Ω (where ν denote the outer unit normal
of the corresponding objects), and (2) in some neighborhood of ∂Ω we have ⟨νΣt , ∂r⟩ ⩾ 1

2

(where ∂r is an extention of νΩ, see below), then it holds ⟨νΣt , ∂r⟩ ⩾ 1−Crγ−o(1) in some
smaller neighborhood of ∂Ω. This estimate enters the proofs in Section 3.6 in showing
the C1,α regularity of level sets and boundary regularity of blow-up limits.

The following notations are used consistently in the present and the next sections.
Suppose Ω is a smooth domain in a Riemannian manifold M . Define the signed distance
function

r(x) :=

{
− d(x, ∂Ω) x ∈ Ω,

d(x, ∂Ω) x /∈ Ω,

For δ ∈ R, we denote Ωδ :=
{
x ∈ M : r(x) < δ

}
. We use r0 to denote a radius such

that r(x) is smooth in Ω \Ω−r0 . In Lemma 3.5.1∼ 3.5.3, the existence of such a radius is
implicitly assumed. In Ω \ Ω−r0 we define the outer radial vector field ∂r := ∇r.

For a hypersurface Σ ⊂ Ω \ Ω−r0 , we use ν,A,H to denote the unit normal vector,
second fundamental form and mean curvature. We use |·|Σ,∇Σ,∆Σ to denote the (Hilbert-
Schmidt) norm, gradient and Laplacian on Σt, and use | · |,∇,∆ for objects with respect
to the ambient manifold M . Also, denote

p := ⟨ν, ∂r⟩.

The following algebraic fact is useful: |ν − p∂r| = |∂r − pν| = |∇Σr| =
√

1− p2.
When there is a family of hypersurfaces {Σt}, we often omit the dependence on t in

the above notations. When Σt evolves under the IMCF, we denote □ = ∂t − 1
H2 ∆Σ the

associated heat operator.

We start with evaluating ∆Σp. The main formula (3.5.1) is arranged such that each
term vanishes when Σ = ∂Ω−r for some r, and the terms with unfavorable sign become
small when M and ∂Ω are close to being flat.

Lemma 3.5.1. Let Σ be a smooth hypersurface in Ω \Ω−r0, such that p > 0 on Σ. Then
we have

∆Σp ⩽ ⟨∇ΣH, ∂r⟩ − p
∣∣A− p−1∇2r

∣∣2
Σ

+ |∇2r|2p−1(1− p2) +
(
|Ric |+ n|∇2∂r|

)√
1− p2.

(3.5.1)

(In the second term, the expression ∇2r means the restriction of ∇2
Mr to Σ.)
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Proof. Near a given point x ∈ Σ, we let {ei}1⩽i⩽n−1 be a local orthonormal frame on Σ,
such that ∇Σ

ei
ej = 0 at x. We compute

∆Σp =
∑
i

eiei⟨ν, ∂r⟩ =
∑
i

ei

[
⟨A(ei), ∂r⟩+ ⟨ν,∇ei∂r⟩

]
=
∑
i

[
⟨∇ei(A(ei)), ∂r⟩+ 2⟨A(ei),∇ei∂r⟩+ ⟨ν,∇ei∇ei∂r⟩

]
. (3.5.2)

Here A(ei) is understood as a tangent vector field of Σ. First observe that

2
∑
i

⟨A(ei),∇ei∂r⟩ = 2
∑
i

∇2r(A(ei), ei) = 2⟨A,∇2r⟩Σ. (3.5.3)

Next, the first term in (3.5.2) is calculated as∑
i

⟨∇eiA(ei), ∂r⟩ =
∑
i

〈
(∇Σ

ei
A)(ei) + A(∇Σ

ei
ei)− A(ei, A(ei))ν, ∂r

〉
= ⟨divΣA− |A|2Σ ν, ∂r⟩
= ⟨divΣA, ∂r − pν⟩ − p|A|2

⩽ ⟨∇ΣH, ∂r⟩ − p|A|2Σ + |Ric |
√

1− p2, (3.5.4)

where we use the traced Codazzi equation and note that divΣA, ∇ΣH are tangent to Σ.
It remains to simplify the last term in (3.5.2). We calculate∑

i

⟨ν,∇ei∇ei∂r⟩ =
∑
i

[
⟨ν − p∂r,∇ei∇ei∂r⟩+ p⟨∂r,∇ei∇ei∂r⟩

]
⩽ n|∇2∂r|

√
1− p2 − p

∑
i

∣∣∇ei∂r
∣∣2. (3.5.5)

Continuing to evaluate the second term in (3.5.5):∑
i

∣∣∇ei∂r
∣∣2 =

∑
ij

⟨∇ei∂r, ej⟩2 +
∑
i

⟨∇ei∂r, ν⟩2 ⩾
∑
ij

⟨∇ei∂r, ej⟩2 = |∇2r|2Σ. (3.5.6)

Inserting (3.5.3)∼ (3.5.6) into (3.5.2), we obtain

∆Σp ⩽ ⟨∇ΣH, ∂r⟩ − p|A|2Σ + 2⟨A,∇2r⟩Σ − p|∇2r|2Σ
+ |Ric |

√
1− p2 + n|∇2∂r|

√
1− p2.

This implies (3.5.1) by completing the square and noting that |∇2r|Σ ⩽ |∇2r|.

Lemma 3.5.2. Suppose {Σt} evolves under the IMCF in Ω \Ω−r0, such that p > 0 holds
everywhere. Then we have

□p ⩾
|A− p−1∇2r|2Σ

2H2
p− 2n

|∇2r|2

H2p
(1− p2)− |Ric |+ n|∇2∂r|

H2

√
1− p2. (3.5.7)

Proof. We compute

∂p

∂t
= ∂t⟨ν, ∂r⟩ = ⟨H−2∇ΣH, ∂r⟩+ ⟨ν,∇H−1ν∂r⟩.
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For the second term, we use the fact ∇2r(∂r, X) = 0 for all X to evaluate

⟨ν,∇H−1ν∂r⟩ =
1

H
∇2r(ν, ν) =

1

H
∇2r(ν − p∂r, ν − p∂r) ⩾ −

1

H
|∇2r|(1− p2).

Combined with (3.5.1), we obtain

□p ⩾
|A− p−1∇2r|2Σ

H2
p− 1

H
|∇2r|(1− p2)

− |∇
2r|2

H2p
(1− p2)− |Ric |+ n|∇2∂r|

H2

√
1− p2.

(3.5.8)

We bound the second term in this expression as follows:

1

H
|∇2r|(1− p2) =

H − p−1 trΣ∇2r + p−1 trΣ∇2r

H2
|∇2r|(1− p2)

⩽
√
n− 1

|A− p−1∇2r|Σ + p−1|∇2r|Σ
H2

|∇2r|(1− p2).

Using Young’s inequality, we continue the estimate:

1

H
|∇2r|(1− p2) ⩽

[ |A− p−1∇2r|2Σ
2H2

p+
n

2H2p
|∇2r|2(1− p2)2

]
+ n
|∇2r|2

H2p
(1− p2).

The result follows by combining this into (3.5.8) and noting that 0 < p ⩽ 1.

Lemma 3.5.3. Assume the same conditions as in Lemma 3.5.2. Let η = η(r) be a smooth
radial function, and denote η′ = dη/dr, η′′ = d2η/dr2. Then we have

□η ⩽
2pη′

H2

(
H − p−1 trΣ∇2r

)
− η′′

H2
(1− p2) +

n|η′|
H2
|∇2r|. (3.5.9)

and

□η ⩽
2pη′

H
− η′′

H2
(1− p2) +

n|η′|
H2
|∇2r|. (3.5.10)

Proof. This is obtained by combining

∂η

∂t
=
⟨∇η, ν⟩
H

=
pη′

H
=
pη′

H2

(
H − p−1 trΣ∇2r + p−1 trΣ∇2r

)
with

∆Ση = η′∆Σr + η′′|∇Σr|2 = η′(trΣ∇2r − pH) + η′′(1− p2),

and noting that trΣ∇2r ⩽
√
n− 1|∇2r|Σ ⩽ n|∇2r|.

Lemma 3.5.4. Suppose Ω is a smooth domain, and r0 > 0 is a radius such that r(x) is
smooth in Ω \ Ω−r0. Assume that

|Ric | ⩽ r−2
0 , |∇2r| ⩽ r−1

0 , |∇2∂r| ⩽ r−2
0 (3.5.11)

hold inside Ω \ Ω−r0. Let
{

Σt ⊂ Ω \ Ω−r0
}
be a smooth family of hypersurfaces evolving

under the IMCF. Assume additionally that p ⩾ 1
2
on all Σt. Then there exist constants

γ ∈ (0, 1/2) and C1, C2 > 0 depending only on n, such that the following holds: if we set

η(r) =
(
b− r/r0

)−γ
, F = (1− p)η, (3.5.12)
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with any choice b ∈ (0, 1], then we have the evolution inequality

(1− p)
2
γ
−1H2□F + ⟨∇ΣF,X⟩ ⩽

C1

r20

(
− F

γ+2
γ + C2

)
(3.5.13)

on Σt, where X is a vertain smooth vector field.

Proof. Note that r < 0 inside Ω, hence η > 0 and increasing when approaching ∂Ω.
Combining Lemma 3.5.2 and equation (3.5.9) in Lemma 3.5.3, then using (3.5.11) with
1
2
⩽ p ⩽ 1 to simplify the resulting expressions, we have

□F = −η□p+ (1− p)□η − 2

H2
⟨∇Σ(1− p),∇Ση⟩

⩽ −|A− p
−1∇2r|2Σ

2H2
ηp+ 2n

|∇2r|2

H2p
η(1− p2) +

|Ric |+ n|∇2∂r|
H2

η
√

1− p2

+
2pη′

H2
(1− p)

(
H − p−1 trΣ∇2r

)
− η′′

H2
(1− p)(1− p2) + n

|η′|
H2
|∇2r|(1− p)

− 2

H2η
⟨∇ΣF,∇Ση⟩+

2

H2η
(1− p)|∇Ση|2

⩽ −|A− p
−1∇2r|2Σ

2H2
ηp+

8n

H2r20
η(1− p) +

4nη

H2r20

√
1− p

+
2pη′

H2
(1− p)

(
H − p−1 trΣ∇2r

)
− η′′

H2
(1− p)2(1 + p) +

n|η′|
H2r0

(1− p)

− 2

H2η
⟨∇ΣF,∇Ση⟩+

2

H2

(η′)2

η
(1− p)2(1 + p).

We use Young’s inequality to estimate the fourth term:

2pη′

H2
(1− p)

(
H − p−1 trΣ∇2r

)
⩽

(H − p−1 trΣ∇2r)2

2(n− 1)H2
ηp+ 8(n− 1)

(η′)2

H2η
p(1− p)2

⩽
|A− p−1∇2r|2Σ

2H2
ηp+ 8n

(η′)2

H2η
p(1− p)2.

Further, we calculate

η′ =
γ

r0
η
γ+1
γ , η′′ =

γ(γ + 1)

r20
η
γ+2
γ .

Inserting these to the main estimate, we obtain

H2□F ⩽
8n

r20
η(1− p) +

4nη

r20

√
1− p+ 8n

γ2

r20
η
γ+2
γ p(1− p)2

− γ(γ + 1)

r20
η
γ+2
γ (1− p)2(1 + p) +

nγ

r20
η
γ+1
γ (1− p)

− 2

η
⟨∇ΣF,∇Ση⟩+

2γ2

r20
η
γ+2
γ (1− p)2(1 + p).

Multiplying both sides by (1− p)
2
γ
−1, and using the facts 0 < p ⩽ 1, 1− p ⩽

√
1− p, we

obtain

(1− p)
2
γ
−1H2□F ⩽

12n

r20
η(1− p)

2
γ
− 1

2 +
nγ

r20
η
γ+1
γ (1− p)

2
γ − ⟨∇ΣF,X⟩

+
1

r20

[
8nγ2 + 4γ2 − γ(γ + 1)

]
η
γ+2
γ (1− p)

γ+2
γ ,

(3.5.14)
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where X is a certain smooth vector field. Choosing γ sufficiently small (depending only
on n), we can realize

8nγ2 + 4γ2 − γ(γ + 1) < −3γ2. (3.5.15)

Using Hölder’s inequality, we have

12nη(1− p)
2
γ
− 1

2 ⩽ γ2η
γ+2
γ (1− p)

γ+2
γ + C(n)η

− (4−3γ)(2+γ)

3γ2 (3.5.16)

and

nγη
γ+1
γ (1− p)

2
γ ⩽ γ2η

γ+2
γ (1− p)

γ+2
γ + C(n)η

− (1−γ)(2+γ)
γ2 (3.5.17)

Notice that η ⩾ 2−γ in Ω \ Ω−r0 , which bounds the last terms uniformly by constants.
Inserting (3.5.15)∼ (3.5.17) into (3.5.14), we finally obtain

(1− p)
2
γ
−1H2□F + ⟨∇ΣF,X⟩ ⩽

1

r20

(
− γ2F

γ+2
γ + C(n)

)
.

Lemma 3.5.5. Suppose b, γ ∈ (0, 1/2) are constants, Ω is a smooth domain, and r0 > 0
is a radius such that r(x) is smooth in Ω \ Ω−r0. Assume that

|Ric | ⩽ r−2
0 , |∇2r| ⩽ r−1

0 , |∇2∂r| ⩽ r−2
0 (3.5.18)

holds inside Ω\Ω−r0. Suppose
{

Σt ⊂ Ω\Ω−r0
}
evolves by the IMCF. Additionally, assume

p ⩾ 1
2
and 1− p ⩽ C3(b− r/r0)γ on each Σt. Set

η(r) =
(
b− r/r0

)1−γ − (2b)1−γ, G = r0Hη(r). (3.5.19)

Then in Ω−br0 \ Ω−r0 we have the evolution inequality

□G+ ⟨∇ΣG,X⟩ ⩽ −
G

n
+

4n

G
+ C4

(
b− r/r0

)−γ(C5

G
− 1
)
, (3.5.20)

where X is a certain smooth vector field, and the constants C4, C5 depend on n,C3.

Proof. Recall the evolution equation of the mean curvature:

□H = − 2

H3
|∇ΣH|2 −

(
|A|2 + Ric(ν, ν)

) 1

H
.

Combining (3.5.10) and (3.5.18) we have

r−1
0 □G = η□H +H□η − 2

H2
⟨∇ΣH,∇Ση⟩

⩽ − 2η

H3
|∇ΣH|2 −

ηH

n− 1
+

η

r20H
+ 2pη′ − η′′

H
(1− p2) +

n|η′|
r0H

− 2

H3
⟨∇ΣH,∇Σ(Hη)− η∇ΣH⟩

= − G

(n− 1)r0
+

η2

r0G
+ 2pη′ − r0

ηη′′

G
(1− p2) +

nη|η′|
G
− ⟨∇ΣG,X⟩.

Note that

η′ = −(1− γ)r−1
0 (b− r/r0)−γ, η′′ = −γ(1− γ)r−2

0 (b− r/r0)−1−γ.
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These imply that |ηη′| ⩽ 2r−1
0 in Ω−br0 \ Ω−r0 , since γ < 1/2. In addition, we have η ⩽ 2

and 1− p2 ⩽ 2(1− p). Hence

□G ⩽ −G
n

+
4 + 2n

G
− 2p(1− γ)(b− r/r0)−γ + 2γ(1− γ)

1− p
G

(b− r/r0)−2γ.

Inserting our assumption 1− p ⩽ C3(b− r/r0)γ, we obtain

□G ⩽ −G
n

+
4n

G
+ (b− r/r0)−γ

[
− 2p(1− γ) +

C

G

]
− ⟨∇ΣG,X⟩.

Since p ⩾ 1
2
, γ ⩽ 1

2
⇒ −2p(1− γ) ⩽ −1

2
, the result follows.

3.6 Initial value problems in smooth domains

In this section we prove the following main existence and regularity theorem, which
implies the main Theorem D.

Theorem 3.6.1. Let Ω ⊂M be a precompact domain with smooth boundary, and E0 ⋐ Ω
be a C1,1 domain. Then there exists a solution u of IVP(((Ω;E0)))+OBS(((∂Ω))), unique up to
equivalence. There exists γ ∈ (0, 1) depending on n, such that the following holds.

(i) We have u ∈ Liploc(Ω) ∩ BV(Ω) ∩ C0,γ(Ω). More precisely, it holds

|∇u(x)| ⩽ sup
∂E0∩B(x,r)

H+ +
C(n)

r
, x ∈ Ω \ E0, r ⩽ σ(x; Ω, g), (3.6.1)

where σ(x; Ω, g) is as in Definition 2.4.2, and

|∇u(x)| ⩽ Cd(x, ∂Ω)γ−1, x ∈ Ω \ E0, (3.6.2)

for some constant C > 0.
(ii) The solution u is calibrated in Ω \ E0 by a vector field ν, which satisfies

⟨ν, ∂r⟩(x) ⩾ 1− Cd(x, ∂Ω)γ (3.6.3)

in some small neighborhood of ∂Ω. Here C > 0 is a constant, and ∂r := −∇d(·, ∂Ω) is
the outpointing unit vector perpendicular to ∂Ω.

(iii) Each level set ∂Et is a C
1,γ/2 hypersurface in some small neighborhood of ∂Ω.

(iv) If v ∈ Liploc(Ω) is some other solution of IVP(((Ω;E0))), then u ⩾ v in Ω \ E0.

The proof is to do an approximation, where we replace the obstacle ∂Ω by a “soft
obstacle” represented by a weight function ψδ. This function is defined such that ψδ|Ω = 0
and ψδ(x)→ +∞ when d(x,Ω)→ δ. It follows that

lim
δ→0

ψδ(x) =

{
0 (x ∈ Ω),

∞ (x /∈ Ω),

and we recover a hard obstacle when δ → 0. Consider the weighted IMCF

div
(
eψδ
∇uδ
|∇uδ|

)
= eψδ |∇uδ| (3.6.4)
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in the δ-neighborhood of Ω. The rapid growth of ψδ ensures the existence of a solution
uδ such that limd(x,Ω)→δ uδ(x) = +∞. Then we take the limit (of a subsequqence) u =
limδ→0 uδ. Note that (3.6.4) is the usual IMCF inside Ω, thus u is a solution of IVP(((Ω;E0)))
by the standard compactness theorem. The level sets of uδ are bent drastically by ψδ
when going outside Ω, and when δ → 0, a large amount of level sets pile up at ∂Ω. We
will try to show that the limit solution u satisfies the terms of Theorem 3.6.1.

In reality, there is another layer of complexity in this argument: the parabolic estimates
in Section 3.5 only work for smooth solutions. Therefore, we will not directly solve (3.6.4),
but instead solve the elliptic regularization of it. See Section 2.4 for a general introduction.
In particular, due to the geometric meaning of elliptic regularized equation, we may apply
the results of Section 3.5 to (the spacetime graph of) the regularized solutions.

The remainder of this section is organized as follows. In Subsection 3.6.1, we set up
some definitions and preliminary estimates, then we make precise the above approxima-
tion scheme. In the end of Subsection 3.6.1, we summarize the remining tasks needed
to conclude Theorem 3.6.1. In Subsection 3.6.2 we outline the strategy to prove these
(highly nontrivial) tasks. In particular, we will explain how elliptic regularization, blow-
up techniques and parabolic estimates are combined into the proofs. Finally, we prove
these tasks in Subsection 3.6.3.

3.6.1 Setups, notations, and the approximating scheme

We make the following setups and constructions.

The signed distance r(x) and regular radius rI.
Fix Ω, E0 as in Theorem 3.6.1. Let r(x) be the signed distance function to ∂Ω, taking

negative values in Ω and positive values in M \ Ω. For δ ∈ R, we set Ωδ =
{
x ∈ M :

r(x) < δ
}

. Thus Ωδ ⊂ Ω when δ < 0, and Ωδ ⊃ Ω when δ > 0. Let rI be a sufficiently
small radius, so that the following holds:

(1) d(∂E0, ∂Ω) > 3rI ,
(2) r(x) is smooth in Ω3rI \ Ω−3rI

Define the radial vector field ∂r := ∇r, which is smooth in the same region. We further
decrease rI such that the following holds:

(3) in Ω3rI \ Ω−3rI we have the small curvature condition

|Ric | ⩽ 1

100n2r2I
, |∇∂r| ⩽

1

100n2rI
, |∇2∂r| ⩽

1

100n2r2I
, (3.6.5)

(4) for all x ∈ Ω \ Ω−rI and r, s ⩽ rI , we have Hn−1
(
B(x, r) ∩ ∂Ω−s

)
⩽ 2|Bn−1|rn−1,

(5) for all x ∈ Ω \ Ω−rI we have σ(x; Ω, g) ⩾ 1
2
|r(x)| (see Definition 2.4.2).

The weight functions ψδ.
We fix a function ψ0 : (−∞, 1)→ R+ such that:
(1) the conditions of Theorem 3.4.3 are satisfied (in particular, ψ0 is strictly increasing

and convex in (0, 1), and ψ0|[−∞,0] ≡ 0, limx→1 ψ0(x) = +∞),
(2) ψ0(

1
2
) > 1

2
, and ψ′

0(x) > 1 for all x ∈ [1
2
, 1), and ψ0(x) > ψ0(

1
2
)+3 for all x ∈ [3

4
, 1).

(3) ψ0(x) ⩾ (n− 1) log 1
1−x for all x ∈ [1

2
, 1).

For each δ ∈ (0, rI), we define the (smooth) weight function

ψδ(x) =

{
0, x ∈ Ω,

ψ0

(
δ−1r(x)

)
, x ∈ Ωδ \ Ω.
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Note that limx→∂Ωδ ψδ(x) = +∞.

The approximating equations.

For δ > 0, we consider the weighted IMCF (see Subsection 3.2.1)

div
(
eψδ
∇u
|∇u|

)
= eψδ |∇u|, (3.6.6)

and for ε > 0 consider its elliptic regularization (see Remark 3.2.2):

div
(
eψδ

∇u√
ε2e2ψδ/(n−1) + |∇u|2

)
= eψδ

√
ε2e2ψδ/(n−1) + |∇u|2. (3.6.7)

The following lemma ensures the presence of good enough barriers.

Lemma 3.6.2 (barrier functions). Suppose δ ∈ (0, rI). Then the function

uδ(x) = ψδ(x)− ψ0

(1

2

)
−
(r(x)

δ
− 1

2

)
(3.6.8)

is negative in Ωδ/2 \ Ω and positive in Ω \ Ωδ/2. Moreover, uδ is a strict subsolution of
(3.6.6) with nonvanishing gradient in Ωδ \ Ωδ/2. The function

uδ(x) = ψδ(x) +
r(x)

rI
(3.6.9)

is a strict supersolution of (3.6.6) in the region Ωδ \ Ω−rI .

Proof. The claim on the sign of uδ follows from ψ0(1/2) > 1/2 and the strict convexity of
ψ0. In Ωδ \ Ωδ/2 we have

|∇uδ| =
∣∣∣∂ψδ
∂r
− 1

δ

∣∣∣ =
1

δ

∣∣ψ′
0(r(x))− 1

∣∣ =
1

δ

(
ψ′
0(δ

−1r(x))− 1
)

=
∂ψδ
∂r
− 1

δ
.

The third equality is because ψ′
0 > 1 on [1/2, 1). The same facts imply that |∇uδ| ≠ 0

everywhere in Ωδ \ Ωδ/2. On the other hand, we calculate

div
(
eψδ
∇uδ
|∇uδ|

)
= div

(
eψδ∂r

)
= eψδ

(∂ψδ
∂r

+ div ∂r

)
> eψδ

(∂ψδ
∂r
− 1

100rI

)
,

where the last inequality comes from (3.6.5). Hence uδ is a strict subsolution on Ωδ \Ωδ/2.

Next, inside Ωδ \ Ω−rI we calculate

div
(
eψδ
∇uδ
|∇uδ|

)
⩽ eψδ

(∂ψδ
∂r

+
1

100rI

)
< eψδ

(∂ψδ
∂r

+
1

rI

)
= |∇uδ|,

confirming the supersolution property.

Now the following lemma provides elliptic regularized solutions. Note that the system
(3.6.10)∼ (3.6.10) is nothing else but (2.4.9)∼ (2.4.11). This is seen from Remark 3.2.2
and the fact that Ωλδ is a sub-level set of uδ.
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Lemma 3.6.3 (approximating solutions). For each δ < rI and λ ∈ (3/4, 1), there exists
ε(δ, λ) > 0 such that the boundary value problem

div
(
eψδ

∇uε,δ,λ√
ε2e2ψδ/(n−1) + |∇uε,δ,λ|2

)
= eψδ

√
ε2e2ψδ/(n−1) + |∇uε,δ,λ|2

in Ωλδ \ E0,

uε,δ,λ = 0 on ∂E0,

uε,δ,λ = uδ − 2 on ∂Ωλδ

(3.6.10)

(3.6.11)

(3.6.12)

admits a solution uε,δ,λ ∈ C∞(Ωλδ \ E0

)
for all 0 < ε ⩽ ε(δ, λ). We have the C0 bounds

max
{
− ε, ψδ(x)− C

}
⩽ uε,δ,λ(x) ⩽ ψδ(x) + C ∀x ∈ Ωλδ \ E0, (3.6.13)

for some constant C > 0 independent of ε, δ, λ. In particular, −ε ⩽ uε,δ,λ ⩽ C in Ω \ E0.
We also have the gradient estimate

|∇uε,δ,λ(x)| ⩽ sup
∂E0∩B(x,r)

H+ + 2ε+
C(n)

r
(3.6.14)

for all x ∈ Ω \ E0 and 0 < r ⩽ σ(x; Ω, g), where H+ = max
{
H∂E0 , 0

}
.

Proof. In Ωδ we consider the conformally transformed metric g′ = e2ψδ/(n−1)g. The fact
ψ0 ⩾ (n− 1) log 1

1−x in [1/2, 1) ensures that g′ is a complete metric in Ωδ. Let uδ be as in
(3.6.8). For convenience, we modify uδ inside Ω, so that it is smooth with negative value
there (this does not affect any argument below). Then uδ is smooth and proper in Ωδ,
with {uδ < 0} = Ωδ/2. By Lemma 3.6.2 and Lemma 3.2.1(3), uδ is a smooth subsolution
of IMCF in the region

(
Ωδ \ Ωδ/2, g

′), with nonvanishing gradient there. Finally, note
that Ωλδ is a sub-level set of uδ (namely, Ωλδ = {uδ < L} for some L > 2). Thus we
may invoke Theorem 2.4.6 on (Ωδ, g

′) to obtain that: there is ε(δ, λ) > 0 such that the
regularized equation (2.4.9)∼ (2.4.11) admits a solution for all ε ⩽ ε(δ, λ). But under the
present settings, the regularized equation is exactly (3.6.10)∼ (3.6.12), by Remark 3.2.2.
This shows the existence of the solution uε,δ,λ.

To obtain (3.6.14), we note that the gradient estimate in Theorem 2.4.6 states that

∣∣∇g′uε,δ,λ(x)
∣∣ ⩽ max

{
sup

Bg′ (x,r)∩∂E0

H+, sup
Bg′ (x,r)∩∂Ωλδ

|∇g′uε,δ,λ|g′
}

+ 2ε+
C(n)

r

for all x ∈ Ωλδ\E0 and r ⩽ σ(x; Ωδ, g
′). Since g′ = g inside Ω, and σ(x; Ωδ, g

′) ⩾ σ(x; Ω, g)
for all x ∈ Ω, and Bg′(x, r)∩∂Ωλδ = ∅ when r ⩽ σ(x; Ω, g), this gradient estimate directly
implies (3.6.14). Next, the lower bound in (3.6.13) follows from (2.4.12) and (3.6.8). The
upper bound is derived as follows: by (3.6.14) we have

sup
{
uε,δ,λ(x) : x ∈ Ω−rI

}
⩽ C, (3.6.15)

where C > 0 is independent of ε, δ, λ. We compare uε,δ,λ with uδ +C+1 inside Ωλδ \Ω−rI ,
where uδ is as in (3.6.9). On ∂Ω−rI we have

uε,δ,λ ⩽ C = uδ + C + 1.
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On ∂Ωλδ we have
uε,δ,λ = uδ − 2 < uδ < uδ + C + 1.

Since uδ is a strict supersolution of (3.6.6) in the compact set Ωλδ \ Ω−rI , by continuity,
we may further decrease ε(δ, λ) so that uδ is a strict supersolution of (3.6.10) in the same
region. By the maximum principle, we obtain uε,δ,λ ⩽ uδ + C + 1 in Ωλδ \ Ω−rI . This
implies the desired upper bound along with (3.6.15).

Convergence to an interior solution.

Lemma 3.6.4. For any sequences δi → 0, λi → 1, εi → 0 with εi ⩽ ε(δi, λi), there exists
a sequence of solutions ui := uεi,δi,λi of (3.6.10)∼ (3.6.12). Moreover, a subsequence of ui
converges in C0

loc(Ω\E0) to a function u ∈ Liploc(Ω\E0) as i→∞, and u solves IVP(((Ω;E0)))
and is calibrated by some vector field ν in Ω \ E0.

Proof. The approximate solutions ui are directly given by Lemma 3.6.3. With an appli-
cation of Theorem 2.4.7 to the data Ωi = Ω \ E0, gi = g (note that ψδi ≡ 0 in Ω, so the
weighted equation is reduced to the ordinary IMCF), we find a subsequence of ui that
converges in C0

loc(Ω \ E0) to a calibrated solution u ∈ Liploc(Ω \ E0). Additionally, due
to (3.6.14), the functions ui are uniformly Lipschitz up to ∂E0. Therefore, the uniform
convergence and Lipschitz regularity of u holds up to ∂E0. Then by (3.6.13) (3.6.11), we
have u ⩾ 0 in Ω \E0 and u|∂E0 = 0. Extending u with negative values in E0, we obtain a
solution of IVP(((Ω;E0))).

The remaining tasks.
Take any sequence δi → 0, λi → 1 and εi ⩽ ε(δi, λi) with εi → 0. Let u be the limit

solution given by Lemma 3.6.4, and ν be the corresponding calibration. Note that ν is
not an arbitrary calibration, but one that comes from the use of Theorem 2.4.7 (later we
will make use of the statements in Theorem 2.4.7). We would prove Theorem 3.6.1 if we
show that u respects the boundary obstacle and satisfies conditions (i)∼ (iv) there.

We note that since Theorem 3.6.1 contains a unique statement, it in turn implies that
the limit function u in Lemma 3.6.4 is independent of the choice of δi, λi, εi.

For the clarity of proofs, we split the remaining part of Theorem 3.6.1 as follows:

Proposition 3.6.5. Let u, ν be the solution and calibration obtained in Lemma 3.6.4.
Then there is a radius r0 ∈ (0, rI) and dimensional constants γ = γ(n) ∈ (0, 1), C =
C(n) > 0, such that

1− ⟨ν, ∂r⟩ ⩽ Cr−γ0 |r|γ (3.6.16)

and

|∇u| ⩽ Cr−γ0 |r|γ−1 (3.6.17)

hold inside Ω \ Ω−r0. In particular, u solves IMCF(((Ω \ E0)))+OBS(((∂Ω))).

Proposition 3.6.6. u can be extend continuously to ∂Ω, and we have u ∈ C0,γ(Ω\Ω−r0/2).

Proposition 3.6.7. There exists a sufficiently small radius r1 ∈ (0, r0) such that: for all
t > 0, the set ∂Et \ Ω−r1 is a C1,γ/2 hypersurface.

Proof of Theorem 3.6.1 assuming these propositions.
It is stated in Proposition 3.6.5 that u respects the obstacle ∂Ω. The condition u ∈

Liploc(Ω)∩BV (Ω)∩C0,γ(Ω) follows by interior regularity and Lemma 2.2.2 and Poposition
3.6.6. The gradient bound (3.6.1) follows by taking limit of (3.6.14). The boundary
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regularity (3.6.2) follows from (3.6.17) inside Ω \ Ω−r0 , and follows from the interior
regularity inside Ω−r0 . The bound on calibration follows from (3.6.16). Finally, the
regularity of level sets follows from Proposition 3.6.7, and the maximality follows from
Corollary 3.3.20.

3.6.2 The spacetime foliation; strategies of the proof

The approximation process described above, which essentially invokes the elliptic reg-
ularization in Theorem 2.4.7, provides an additional set of data. For each i, the family of
hypersurfaces

Σi
t := graph

(
ε−1
i (ui − t)

)
form a downward translating soliton of the IMCF in the product domain(

Ωλiδi × R, exp(
2ψδi
n− 1

)g + dz2
)
,

due to Remark 3.2.2 and the geometric meaning of elliptic regularization. Equivalently,
the function Ui(x, z) = ui(x)− εiz solves the smooth IMCF

div
( ∇gUi
|∇gUi|

)
= |∇gUi|

in the same region. The proof of Proposition 3.6.5∼ 3.6.7 is done by obtaining the corre-
sponding estimates on Σi

t, and then passing to the limit.
To distinguish from objects on M , we will use bold symbols to denote objects on

M × R. We denote by r(x, z) = r(x) the signed distance to ∂Ω × R. Note that r is
smooth in (Ω3rI \ Ω−3rI ) × R. Then denote the product metric g = g + dz2 and radial
vector field ∂r = ∇gr. In the region (Ω \ E0)× R, let

νi :=
∇gUi
|∇gUi|g

=
∇ui − εi∂z√
εi + |∇ui|2

(3.6.18)

be the downward unit normal vector field of the foliation Σi
t (we remind that ψδi = 0 in

Ω, so the weighted IMCF is reduced to the usual one). According to Theorem 2.4.7, the
vector fields νi converge to some vector field ν weakly in L1

loc(Ω \E0), and the projection
of ν onto the Ω factor is the calibration ν given in Lemma 3.6.4.

Propositions 3.6.5∼ 3.6.7 are proved via the following steps:
1. We show that when i → ∞, we have inf∂Ω×R⟨νi,∂r⟩g → 1 (Lemma 3.6.8). The

proof uses a blow-up argument: if there is a sequence of exceptional points xi ∈ ∂Ω× R,
then we may rescale the solutions ui near xi and obtain an exceptional blow-up limit.
The limit function will be a weak solution of

div
(
eψ0(xn)

∇u
|∇u|

)
= eψ0(xn)|∇u|.

However, Theorem 3.4.3 implies that this limit must have the form u = ψ(xn) − C.
Then, standard geometric measure theory is used to show that the space-time graphs Σi

t

converges to a hyperplane at xi in C1 sense, contradicting our hypotheses for bad points.
2. Let ri be the largest radius so that ⟨νi,∂r⟩g ⩾ 1/2 holds inside (Ω \Ω−ri)×R. We

show that ri is uniformly bounded below (Lemma 3.6.9). If this is false, then we find a
subsequence of radii ri → 0 and exceptional points xi ∈ ∂Ω−ri×R, with ⟨νi,∂r⟩g(xi, 0) =
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1/2. Using the result of step 1 and the parabolic estimate in Lemma 3.5.4, we will obtain
the bounds

1− ⟨νi,∂r⟩g ⩽ C
(
o(1) + |r|/ri

)γ
(3.6.19)

for some uniform constants C, γ. Then consider a blow-up sequence centered at xi. The
limit is an exceptional weak solution u′ on {xn < 0} ⊂ Rn+1. The bound (3.6.19) passes to
the limit and implies that u′ respects the obstacle {xn = 0}, due to Corollary 3.3.18. This
eventually contradicts Theorem 3.4.1, by looking at the convergence of the space-time
graphs Σi

t (this is more involved compared to the previous step).
3. Combining the above two steps, we eventually obtain (3.6.16) through another ap-

plication of parabolic estimate (Lemma 3.5.4). The boundary gradient estimate (3.6.17)
and Hölder regularity follows by applying Lemma 3.5.5. Finally, Proposition 3.6.7 fol-
lows by an ε-regularity theorem for almost perimeter-minimizers (in the sense of (3.6.42)
below).

3.6.3 Proof of Propositions 3.6.5∼ 3.6.7

We assume all the setups and notations made in subsection 3.6.1 and 3.6.2.

Lemma 3.6.8. For any θ < 1, there exists i0 ∈ N such that for all i ⩾ i0 we have

inf
∂Ω×R
⟨νi,∂r⟩g ⩾ θ.

Proof. Suppose that the conclusion does not hold. Then passing to a subsequence (which
we do not relabel), we can find a constant θ0 < 1 and a sequence of points qi = (xi, zi) ∈
∂Ω × R, such that ⟨νi,∂r⟩g(xi, zi) ⩽ θ0. Since νi is invariant under vertical translation,
we may assume zi = 0. Passing to a further subsequence, we may assume xi → x0 ∈ ∂Ω.

Consider the domains

Ωi := Bg(xi,
√
δi) ∩ Ωλiδi , Ωi := Ωi × (−1, 1)

with the rescaled and conformally transformed metrics

hi := δ−2
i e2ψδi/(n−1)g, hi := hi + δ−2

i dz2.

Set the normalized function u′i(x) := ui(x) − ui(xi). By the equation (3.6.10), Remark
3.2.2 and the scaling invariance of IMCF, the functions U ′

i(x, z) := u′i(x)− εiz are smooth
solutions of the IMCF in (Ωi,hi).

To properly state the blow-up process, we define some suitable coordinate maps. In
each tangent space TxiM , fix an orthonormal frame {ei} such that e1, · · · , en−1 are tan-
gential to ∂Ω, and en = ∂r. With respect to this frame, the g-exponential map at xi
(denoted by expxi) is a diffeomorphism from a small ball in Rn to its image. Define the
maps

Φi : x 7→ expxi(δix), Φi : (x, z) 7→
(
expxi(δix), δiz

)
,

and set the preimages1 Ω̃i := Φ−1
i (Ωi) ⊂ Rn, Ω̃i := Φ−1

i (Ωi) = Ω̃i× (−δ−1
i , δ−1

i ). Also, set

the pullbacks h̃i := Φ∗
ihi, h̃i := Φ∗

ihi = h̃i + dz2, and ũi := u′i ◦ Φi, Ũ
′
i := U ′

i ◦Φi. Note

that Ũ ′
i(0) = U ′

i(xi, 0) = 0 and Ũi(x, z) = ũ′i(x) − εiδiz. By diffeomorphism invariance,

1The rule for setting up the notations: boldface→ objects in M×R; tilde→ objects in the pulled-back
spaces; prime → normalized functions (so that the value at xi is zero).
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Ũ ′
i are smooth solutions of IMCF in (Ω̃i, h̃i). Therefore, ũi solves the (εiδi)-regularized

equation

div

(
∇h̃i

ũi(
ε2i δ

2
i + |∇h̃i

ũi|2
)1/2

)
=
√
ε2i δ

2
i + |∇h̃i

ũi|2 in (Ω̃i, h̃i).

Next, we take limit of the rescaled objects. Note that Ω̃i → {xn < 1} ⊂ Rn lo-

cally, since δi → 0 and λi → 1. Also, h̃i → h̃ := e2ψ0(xn)/(n−1)(dx21 + · · · + dx2n) locally

smoothly. Apply Theorem 2.4.7 with the data Ω̃i, h̃i and ũi. As a result, there is a sub-
sequence such that ũ′i converges in C0

loc to a function ũ′ ∈ Liploc({xn < 1}), and ũ′ solves

IMCF((({xn < 1}, h̃))). By Lemma 3.2.1(3), ũ′ is a weak solution of the weighted IMCF

div
(
eψ0(xn)

∇0ũ
′

|∇0ũ′|

)
= eψ0(xn)|∇0ũ

′|,

where ∇0 denotes the Euclidean gradient. The gradient estimate (2.4.14) implies

|∇0ũ
′(x)| = |∇h̃ũ

′(x)| ⩽ C(n)

σ
(
x; {xn < 1}, h̃

) ⩽
C(n)

|xn|
, ∀x ∈ {xn < 0}.

Furthermore, the C0 bounds in Theorem 3.6.3 gives (recall u′i = ui − ui(xi))

u′i ⩾ ψδi − 2C ⇒ ũ′i(x) ⩾ ψδi
(
expxi(δix)

)
− 2C = ψ0(xn) + o(1)− 2C.

This passes to the limit and gives the bound ũ′(x) ⩾ ψ0(xn)−2C. Now all the assumptions
of Theorem 3.4.3 are met, and we obtain ũ′(x) = ψ0(xn)− C ′ for some other C ′.

Set Ũ ′(x, z) := ũ′(x) = ψ0(xn)−C ′, which is clearly the C0
loc limit of Ũ ′

i . The sub-level

sets E0(Ũ
′
i) have locally uniformly bounded perimeter, by Lemma 2.2.2(i), Thus passing

to a further sequence, we may assume E0(Ũ
′
i) → E in L1

loc, for some set E ⊂
{

(x, z) :

xn < 1
}

. Since Ũ ′
i → Ũ ′ in C0

loc, we have

E0(Ũ
′) ⊂ E ⊂ E+

0 (Ũ ′) (3.6.20)

up to zero measure. Next, by Corollary 2.4.4 and the nice convergence of h̃i, the gradients
|∇h̃i

Ũ ′
i | are uniformly bounded in BRn+1(0, 1/2), for all large i. Then by (2.1.5), E0(Ũ

′
i)

are uniform almost perimeter minimizers in
(
B0(0, 1/2), h̃i

)
. By Theorem A.2.2(ii) and

the fact 0 ∈ ∂E0(Ũ
′
i), we have 0 ∈ spt |µE|. Combined with (3.6.20) and the expression

Ũ ′ = ψ(xn)− C, we see that there are only two possibilities:

(1) C ′ > 0 and E = {xn < 0}, or

(2) C ′ = 0, Ũ ′(x, z) = ψ0(xn), and E ⊂ {xn < 0}.
Suppose the second case holds. By Theorem 2.1.13, the limit set E locally minimizes the
energy JŨ ′ in

{
(x, z) : xn < 1

}
. As Ũ ′ ≡ 0 in

{
(x, z) : xn < 0

}
, this implies that E is

locally inward-minimizing. At the same time, this also implies that E is locally outward
minimizing in {(x, z) : xn ⩽ 0}. By direct verification, this implies that E is locally
outward perimeter-minimizing in Rn+1. As a result, E is locally perimeter-minimizing in
Rn+1. By Lemma A.6.4 and the facts E ⊂ {xn < 0}, 0 ∈ spt(|µE|), we have E = {xn < 0}.

So in either case we conclude that E = {xn < 0}. Then Theorem A.2.2(iii) implies

νE0(Ũ ′
i)

(0)→ νE(0) = ∂xn ,
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where νE0(Ũ ′
i)

is the outer unit normal of E0(Ũ
′
i) with respect to h̃i. On the other hand,

we may evaluate by unraveling the pullbacks〈
νE0(Ũ ′

i)
, ∂xn

〉
h̃i

(0) = ⟨νi,∂r⟩g(xi, 0).

This contradicts our initial assumption ⟨νi,∂r⟩g(xi, 0) ⩽ θ0, thus proves the lemma.

Lemma 3.6.9. There exists r0 < rI and i0 ∈ N, such that for all i ⩾ i0 we have

inf
(Ω\Ω−r0 )×R

⟨νi,∂r⟩g ⩾
1

2
.

Proof. By Lemma 3.6.8, we have inf∂Ω×R⟨νi,∂r⟩g ⩾ 3/4 for all sufficiently large i. Sup-
pose that the lemma is false. Then passing to a subsequence, we may find radii ri ∈ (0, rI),
ri → 0, and a sequence of points qi = (xi, zi) ∈ ∂Ω−ri × R, such that

⟨νi,∂r⟩g(xi, zi) ⩽
1

2
. (3.6.21)

By translation invariance, we may assume zi = 0. By re-selecting each xi to have the
smallest distance to ∂Ω (and decreasing ri correspondingly), we can further assume that

⟨νi,∂r⟩g ⩾
1

2
inside (Ω \ Ω−ri)× R. (3.6.22)

Finally, passing to a further subsequence, we may assume xi → x0 ∈ ∂Ω. By Lemma
3.6.8, there exist numbers θi → 1 such that

inf
∂Ω×R
⟨νi,∂r⟩g ⩾ θi. (3.6.23)

Step 1. We establish a uniform bound on νi by parabolic estimates.
Recall that Σi

t = graph
(
ε−1
i (ui− t)

)
forms a downward translating soliton of the usual

IMCF in (Ω\E0)×R. We apply Lemma 3.5.4 to the flow Σi
t, with Ω replaced by Ω×R and

with the choice r0 = ri. The small curvature condition (3.5.11) is implied by (3.6.5), and
the condition p ⩾ 1

2
there comes from (3.6.22). Choosing the parameter bi = (1 − θi)1/γ

there, it follows that the quantity F =
(
1− ⟨νi,∂r⟩g

)
(bi − r/ri)−γ satisfies(

1− ⟨νi,∂r⟩g
) 2
γ
−1
H2□F + ⟨∇ΣF,X⟩ ⩽

C1

r2i

(
− F

γ+2
γ + C2

)
inside (Ω\Ω−ri)×R, where □ = ∂t−H−2∆Σ is the heat operator associated to the IMCF,
and the subscripts Σ are shorthands for Σi

t. Since Σi
t evolves as translating soliton in the

z-direction, we have ∂tF = ⟨∇ΣF, Y ⟩ for some smooth vector field Y . Hence

−
(
1− ⟨νi,∂r⟩g

) 2
γ
−1

∆ΣF + ⟨∇ΣF,Z⟩ ⩽
C1

r2i

(
− F

γ+2
γ + C2

)
,

for some γ ∈ (0, 1/2) and C1, C2 > 0 depending only on n. Since Σi
t is graphical, the

intersection Σi
t ∩
(
(Ω \Ω−rI )×R

)
is compact. By the maximum principle and invariance

in the z-direction, we obtain

max
(Ω\Ω−ri )×R

(F ) ⩽ max
{

max
∂Ω×R

(F ), max
∂Ω−ri×R

(F ), C
γ
γ+2

2

}
⩽ max

{
1,

1

2
, C

γ
γ+2

2

}
.
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From this we have

1− ⟨νi,∂r⟩g ⩽ C3(bi − r/ri)
γ in (Ω \ Ω−ri)× R. (3.6.24)

Step 2. We establish an inward minimizing property of the level sets of Ui, where
recall Ui(x, z) = ui(x)− εiz. Denote Ω = Ω×R. Fix t ∈ R, and consider E = Et(Ui)∩Ω.
Suppose F ⋐ K ⋐ (M \E0)×R. Using the boundary condition (3.6.23), the fact νE = νi
in Ω, and the smooth IMCF equation div(νi) = |∇gUi|, we evaluate by the divergence
theorem as follows. In the expressions, we write | · | = Hn−1(·).

P
(
E;Ω ∩K

)
− P

(
E\F ;Ω ∩K

)
+ θi

(∣∣∂∗E ∩ ∂Ω ∩K∣∣− ∣∣∂∗(E\F ) ∩ ∂Ω ∩K
∣∣)

⩽
∫
∂∗E∩Ω∩K

⟨νE,νi⟩g −
∫
∂∗(E\F )∩Ω∩K

⟨νE\F ,νi⟩g +

∫
∂Ω∩K

(
χ∂∗E − χ∂∗(E\F )

)
⟨νΩ,νi⟩g

=

∫
E∩F
|∇gUi|g.

Next, by the coarea formula we have∫
E∩F
|∇gUi|g =

∫ t

infF∩Ω(Ui)

∣∣∂∗Es(Ui) ∩Ω ∩ F
∣∣ ds.

By a perimeter decomposition and Gronwall argument, as in Lemma 2.2.1, these imply

P
(
E;Ω ∩K

)
+ θi

∣∣∂∗E ∩ ∂Ω ∩K∣∣ ⩽ P
(
E\F ;Ω ∩K

)
+ θi

∣∣∂∗(E\F ) ∩ ∂Ω ∩K
∣∣

+

∫ t

infF∩Ω(Ui)

et−sP
(
F ;Es(Ui) ∩Ω

)
ds.

Notice that P (E;K) = P (E;Ω ∩K) + |∂∗E ∩ ∂Ω ∩ K|, since E ⊂ Ω. So the above
inequality clearly implies (where we have plugged in the definition of E):

θiP
(
Et(Ui) ∩Ω;K

)
⩽ P

(
(Et(Ui) ∩Ω) \ F ;K

)
+
(
et−infF∩Ω(Ui) − 1

)
P (F ). (3.6.25)

We remark that, by the spirit of Theorem 3.3.8, outward-minimizing properties are
sort of automatic. On the other hand, the inward-minimizing property is closely related
to the boundary condition. This explains why (3.6.23) is invoked in this step.

Step 3. We are ready for the blow-up argument. Let yi ∈ ∂Ω be the unique point
with the smallest distance from xi, thus d(xi, yi) = ri. Consider the domains

Ωi := Bg(yi,
√
ri) ∩ Ω, Ωi := Ωi × (−1, 1),

with the metrics

hi := r−2
i g, hi := r−2

i

(
g + dz2

)
.

Define u′i(x) := u(x)−u(xi), U
′
i(x, z) := u′i(x)−εz. Near yi we set up a geodesic normal

coordinate in the same way as in Lemma 3.6.8. Let expyi be the induced exponential map;
thus we have expyi(−rien) = xi. Consider the scaled coordinate maps

Φi : x 7→ expyi(rix), Φi : (x, z) 7→ (expyi(rix), riz).
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Denote Ω̃i := Φ−1
i (Ωi) ⊂ Rn and Ω̃i := Φ−1

i (Ωi) = Ωi × (−r−1
i , r−1

i ) ⊂ Rn+1, equipped
with the metrics and functions

h̃i = Φ∗
ihi, h̃i := Φ∗

ihi = h̃i + dz2,

ũ′i := u′i ◦ Φi, Ũ ′
i := U ′

i ◦Φi.

So Ω̃i is the intersection of BRn(0, 1/
√
ri) with a set that locally approximates {xn < 0}

as i → ∞. Also, notice that Φ−1
i (∂Ω−ri) locally approaches {xn = −1} when i → ∞.

Let us view ũ′i, Ũ
′
i as functions defined only on Ω̃i, Ω̃i (thus we are discarding the values

outside these domains).
As usual, denote en = (0, · · · , 0, 1) ∈ Rn. Further denote en = (en, 0) ∈ Rn+1. Note

the following facts: xi = Φi(−en), and Ũ ′
i(x, z) = ũ′i(x)− εiriz, so Ũ ′

i(−en) = 0. Also, Ũ ′
i

solves the smooth IMCF in (Ω̃i, h̃i), by scaling and diffeomorphism invariance.

We have Ω̃i → {(x, z) : xn < 0} ⊂ Rn+1 and h̃i → euc := dx21 + · · · + dx2n+1 locally
smoothly. By Corollary 2.4.4, we have the gradient estimate∣∣∇h̃i

Ũ ′
i

∣∣
h̃i

(x, z) ⩽
C(n)

|xn|
+ o(1), (3.6.26)

where the o(1) term is uniform in all compact sets and goes to zero as i→∞.

By Theorem 2.4.7 (applied with the data Ω̃i, h̃i, Ũ
′
i), up to a subsequence, we have

Ũ ′
i → Ũ ′ in C0

loc for some Ũ ′ ∈ Liploc({(x, z) : xn < 0}), and the calibrations ν̃i :=

∇h̃i
Ũ ′
i/|∇h̃i

Ũ ′
i | converges to some ν̃ in the weak L1

loc topology. Finally, ν̃ calibrates Ũ ′ as
a solution of IMCF((({xn < 0}; euc))).

Taking limit of (3.6.26) and the C0 bounds in Theorem 3.6.3, we have

|∇h̃0
Ũ ′| ⩽ C(n)

|xn|
, Ũ(x, z) ⩾ −C. (3.6.27)

For (x, z) ∈ Ω̃i with −1 ⩽ xn < 0, we may calculate by unraveling the pullbacks and
using the asymptotics of the exponential map:〈

ν̃i, ∂xn
〉
h̃i

(x, z) = ⟨νi,∂r⟩g(Φi(x), riz) + o(1), (3.6.28)

where the o(1) term locally uniformly converges to zero as δ → 0. By (3.6.24) this implies〈
ν̃i, ∂xn

〉
h̃i

(x, z) ⩾ 1− C3

(
bi − r−1

i r(Φi(x))
)γ − o(1). (3.6.29)

Note that limi→∞ r−1
i r(Φi(x)) = xn and limi→∞ bi = 0. Thus taking the limit i→∞, we

obtain 〈
ν̃, ∂xn

〉
euc

(x, z) ⩾ 1− C3|xn|γ a.e. when − 1 < xn < 0. (3.6.30)

Then by Corollary 3.3.18, Ũ ′ actually solves of IMCF((({xn < 0}, euc)))+OBS((({xn = 0}))).
Then applying Theorem 3.4.1 with (3.6.27) with Ũ ′(−en) = 0, it follows that Ũ ′ ≡ 0.

Step 4. We argue similarly as in Lemma 3.6.8, to obtain a contradiction from the
level sets. Recall −en ∈ ∂E0(Ũ

′
i). Applying Lemma 2.2.2(i) to Ω̃i ⊂ Rn+1, we have the

uniform bound (recall that we are treating E0(Ũ
′
i) as subsets of Ω̃i)

P
(
E0(Ũ

′
i);K

)
⩽ P

(
Ω̃i ∩K

)
, ∀K ⋐ Rn+1.
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Thus, a subsequence of E0(Ũ
′
i) converges to some E ⊂

{
(x, z) : xn < 0

}
in L1

loc(Rn+1).
The gradient bound (3.6.26) and (2.1.5) implies the uniform almost minimizing effect

P
(
E0(Ũ

′
i);B(−en,

1

2
)
)
⩽ P (F ;B(−en,

1

2
)) + C

∣∣E0(Ũ
′
i)∆F

∣∣, (3.6.31)

whenever E0(Ũ
′
i)∆F ⋐ B(−en, 1/2). Then by Theorem A.2.2(ii), we obtain (−en, 0) ∈

spt |µE|. By Theorem 2.1.13, E is a local minimizer of JŨ ′ in
{

(x, z) : xn < 0
}

, and since

Ũ ′ is shown to be constant, E is actually a local perimeter minimizer in
{

(x, z) : xn < 0
}

(with respect to the Euclidean metric). At this point, the minimizing is unknown to hold
up to the boundary. However, one may show that E is locally outward-minimizing in
Rn+1, by the automatic subsolution principle (see Fact 1.4.10, Theorem 3.3.8).

If we can show that E is locally inward perimeter-minimizing in Rn+1, then Lemma
A.6.4 implies E = {(x, z) : xn < −1}, and then Theorem A.2.2(iii) implies the convergence
of normal vectors

ν̃i(−en) = νE0(Ũ ′
i)

(−en)→ ∂xn .

This would contradict (3.6.21) due to (3.6.28), thus proving the lemma. It remains to
show the (non-trivial) inward-minimizing of E.

For each fixed R, we denote QR = {|x′| ⩽ R, |xn| ⩽ R, |z| ⩽ R} ⊂ Rn+1. Let us prove
the following almost constancy conclusion: for each R ⩾ 2 we have

lim
i→∞

min
{
Ũ ′
i(x, z) : (x, z) ∈ QR ∩ Ω̃i

}
= 0. (3.6.32)

Recall the direction bound (3.6.22) and the definition νi = ∇gU
′
i/|∇gU

′
i |g. Pulling back

to Ω̃i, these imply that

∂Ũ ′
i

∂xn
⩾ 0 in

{
− 1/2 ⩽ xn < 0, |x′| ⩽ R, |z| ⩽ R

}
∩ Ω̃i.

for sufficiently large i. Therefore, the minimum in (3.6.32) is attained at a point with

−R ⩽ xn ⩽ −1/2, for each large i. Since Ũ ′
i → Ũ ′ ≡ 0 uniformly on the compact set{

|x′| ⩽ R,−R ⩽ xn ⩽ −1/2, |z| ⩽ R
}

, our claim (3.6.32) immediately follows.
Now we pull back (3.6.25) via Φi. In this process we notice that: Ui and U ′

i differs

only by additive constants, so (3.6.25) holds for Ũ ′
i as well. Also, the inequality (3.6.25) is

invariant under scaling. Moreover, notice a subtlety in notations: in our setting, E0(Ũ
′
i)

is the pull back of E0(U
′
i) ∩ Ω (i.e. the intersection with Ω is already done via Φi). So

for any F ⋐ QR ⋐ BRn+1(0, 1/
√
ri), we have

θiP
(
E0(Ũ

′
i);QR

)
⩽ P

(
E0(Ũ

′
i) \ F ;QR

)
+
(
e
− inf

F∩Ω̃i
(Ũ ′
i) − 1

)
P (F ),

where the perimeters are with respsect to the rescaled and pulled-back metric h̃i. Taking
i → ∞, using (3.6.32), θi → 1, and the convergence h̃i → euc in C0

loc(Rn+1), we obtain
by the standard set replacing argument

P (E;QR) ⩽ P (E \ F ;QR),

where the perimeters are with respect to the Euclidean metric. This proves the inward
minimizing of E in Rn+1, thus completes the proof.
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Proof of Proposition 3.6.5.
Combining the results of Lemma 3.6.8 and 3.6.9, by taking a subsequence we can

assume the following: there is a radius r0 < rI such that

inf
∂Ω×R
⟨νi,∂r⟩g ⩾ 1− 1

i
, inf

(Ω\Ω−r0 )×R
⟨νi,∂r⟩g ⩾

1

2
, for all i. (3.6.33)

Apply Lemma 3.5.4 with the domain Ω×R in place of Ω, and with the smooth solutions
Σi
t = graph

(
ε−1
i (ui − t)

)
and the parameter b = i−1/γ. The small curvature and p ⩾ 1

2

condition there are satisfied by (3.6.5) (3.6.33). Arguing verbatim as in Step 1 of Lemma
3.6.9, we obtain

1− ⟨νi,∂r⟩g ⩽ C3

(
i−1/γ − r/r0

)γ
in (Ω \ Ω−r0)× R. (3.6.34)

We next apply Lemma 3.5.5 in the region (Ω \ Ω−r0)× R. Consider the quantity

G = r0

(
(i−1/γ − r/r0)1−γ − (2i−1/γ)1−γ

)
H,

where H is the mean curvature of Σi
t. The conditions in Lemma 3.5.5 are satisfied by

(3.6.5) (3.6.33) (3.6.34) respectively. By the result (3.5.20) and the fact that Σi
t forms a

translating soliton, we obtain the inequality

− 1

H2
∆ΣG+ ⟨∇ΣG, Y ⟩ ⩽ −

G

n
+

4n

G
+ C4

(
i−1/γ − r/r0

)−γ(C5

G
− 1
)

in (Ω \Ω−r0)×R, for some C4, C5 > 0 independent of i. By the maximum principle, this
implies

max
(Ω−br0\Ω−r0 )×R

(G) ⩽ max
{

max
∂Ω−r0×R

(G), max
∂Ω−br0×R

(G), 2n+ C5

}
⩽ max

{
C(n), 0, 2n+ C5

}
. (3.6.35)

Here, the control of G on ∂Ω−r0 × R follows by Corollary 2.4.4 and the assumptions for
rI :

G(x) ⩽ r0 · 2 ·H(x) ⩽
2C(n+ 1)r0
σ(x; Ω× R, g)

⩽
2C(n+ 1)r0
σ(x; Ω, g)

⩽ C, x ∈ ∂Ω−r0 × R.

So (3.6.35) implies√
ε2i + |∇u2i | = H ⩽

C(n)r−1
0

(i−1/γ − r/r0)1−γ − (2i−1/γ)1−γ
. (3.6.36)

As i→∞, we pass (3.6.34) to the limit and project onto the Ω factor, and obtain

1− ⟨ν, ∂r⟩ ⩽ C3

(
|r|/r0

)γ
a.e. in Ω \ Ω−r0 , (3.6.37)

see below (3.6.18) for the convergence to ν. Passing (3.6.36) to the limit, we obtain

|∇u| ⩽ C(n)r−γ0 |r|γ−1 in (Ω \ Ω−r0)× R.

Finally, by Corollary 3.3.18 and (3.6.37), the solution u respects the obstacle ∂Ω.
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Proof of Proposition 3.6.6.
Let g0 be the product metric on ∂Ω× (0, r0), and Φ : ∂Ω× (0, r0)→ Ω \ Ω−r0 be the

normal exponential map. By (3.6.5), we have 1
2
g0 ⩽ Φ∗g ⩽ 2g0. By (3.6.17), (pulling back

via Φ,) we may view u = u(y, r) as a function on ∂Ω× (0, r0) with |∇g0u| ⩽ Cr−γ0 rγ−1.
For 0 < r1, r2 ⩽ r0/2, from the gradient bound we have∣∣u(y, r1)− u(y, r2)

∣∣ ⩽ Cγ−1r−γ0 |r
γ
1 − r

γ
2 | ⩽ Cγ−1r−γ0 |r1 − r2|γ. (3.6.38)

Note that this implies u ∈ L∞(∂Ω × (0, r0/2)
)
. Next, for r ⩽ r0/2 and d∂Ω(y1, y2) ⩽ r,

we have ∣∣u(y1, r)− u(y2, r)
∣∣ ⩽ Cr−γ0 rγ−1d∂Ω(y1, y2) ⩽ Cr−γ0 d∂Ω(y1, y2)

γ. (3.6.39)

Finally, suppose r ⩽ r0/2 and d∂Ω(y1, y2) ⩾ r. If d∂Ω(y1, y2) ⩾ r0/2, then we have∣∣u(y1, r)− u(y2, r)
∣∣ ⩽ 2∥u∥L∞(∂Ω×(0,r0/2)) · (r0/2)−γ · d∂Ω(y1, y2)

γ. (3.6.40)

If r ⩽ d∂Ω(y1, y2) ⩽ r0/2, then we set s = d∂Ω(y1, y2) and estimate∣∣u(y1, r)− u(y2, r)
∣∣ ⩽ ∣∣u(y1, r)− u(y1, s)

∣∣+
∣∣u(y2, r)− u(y2, s)

∣∣+
∣∣u(y1, s)− u(y2, s)

∣∣
⩽ 2Cγ−1r−γ0 |s− r|γ + Cr−γ0 sγ−1d∂Ω(y1, y2)

⩽ (2Cγ−1 + C)r−γ0 d∂Ω(y1, y2)
γ.

Combined with (3.6.38)∼ (3.6.40), it follows that u can be extend to a C0,γ function
on ∂Ω × [0, r0/2]. Finally, by the smallness of r0, there is a constant C such that
d∂Ω×[0,r0/2](x, y) ⩽ Cdg(Φ(x),Φ(y)). This shows that u extends to a C0,γ function on
Ω \ Ω−r0/2.

Proof of Proposition 3.6.7.
For any x ∈ Ω \ Ω−r0/3 and r < r0/3, by (3.6.17) and the choice of rI we have∫

B(x,r)∩Ω
|∇u| ⩽

∫ |r(x)|+r

max{0,|r(x)|−r}
Hn−1

(
B(x, r) ∩ Ω−s

)
Cr−γ0 sγ−1 ds

⩽ C ′r−γ0 rn−1+γ.

(3.6.41)

It is already known that u respects the obstacle ∂Ω. For all t > 0 and each competitor set
E ⊂ M satisfying E∆Et ⋐ B(x, r), we compare the energy J̃

B(x,r)
u (Et) ⩽ J̃

B(x,r)
u (E ∩ Ω)

and obtain (note that Et∆(E ∩ Ω) ⋐ B(x, r) since Et ⊂ Ω)

P
(
Et;B(x, r)

)
⩽ P

(
E ∩ Ω;B(x, r)

)
+

∫
Et∆(E∩Ω)

|∇u|

⩽ P
(
E;B(x, r)

)
+ P

(
Ω;B(x, r)

)
− P

(
E ∪ Ω;B(x, r)

)
+ Cr−γ0 rn−1+γ.

It is directly verifiable, using the C2 smoothness of ∂Ω (see [105, Section 1.6]), that

P
(
Ω;B(x, r)

)
⩽ P

(
E ∪ Ω;B(x, r)

)
+ Cr−2

0 rn+1.

Thus we obtain the almost-minimizing condition

P
(
Et;B(x, r)

)
⩽ P

(
E;B(x, r)

)
+ Cr−γ0 rn−1+γ. (3.6.42)
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Next, combining (3.6.16) and Remark 2.3.2, we obtain that almost every Et satisfies

1− ⟨νEt , ∂r⟩ ⩽ C3r
−γ
0 |r|γ. (3.6.43)

In addition, on ∂∗Et ∩ ∂∗Ω it is clear that νEt = ∂r. Since ∂r is smooth, this has the
following consequence: for any l > 0 there exists a sufficiently small radius r(l), such that
for all x ∈ Ω \ Ω−r(l), s ⩽ r(l), the set Et ∩ B(x, s) is representable as the sub-graph
of a l-Lipschitz function in some geodesic normal coordinate near x. Conbining (3.6.42)
and this small slope condition, the classical small excess regularity theorem (see [104] and
[3, 105]) implies the following: there is a sufficiently small r1 < r0, such that almost every
Et \ Ω−r1 is a C1,γ/2 hypersurface. By the Arzela-Ascoli theorem, the same conclusion
holds for all t > 0. This proves the desired result.

3.7 p-Harmonic approximation

Suppose p > 1. The p-Laplacian is defined as

∆pv = div
(
|∇v|p−2∇v

)
.

A function v ∈ W 1,p(Ω) is called p-harmonic if ∆pv = 0 weakly, namely, if∫
|∇v|p−2⟨∇v,∇φ⟩ = 0, ∀φ ∈ C1

0(Ω).

It is a classical anlytical fact that p-harmonic functions are locally C1,α [71]. The relation
between IMCF and p-harmonic functions was initiated from the work of Moser [89], and
was further investigated by Kotschwar-Ni [65], Mari-Rigoli-Setti [79] (see also [14]). The
following fundamental relation was shown:

Lemma 3.7.1 ([65, 89]). Suppose pi ↘ 1, and vpi ∈ W
1,pi
loc (Ω) are positive pi-harmonic

functions in a domain Ω, such that

lim
i→∞

(1− pi) log vpi = u in C0
loc(Ω).

Then u is a solution of IMCF(((Ω))).

When an initial value is involved, we have convergence up to ∂E0:

Lemma 3.7.2 ([65, p.13]). Suppose E0 ⋐ Ω is a C1,1 domain, pi ↘ 1, and vpi satisfy{
∆pivpi = 0, 0 < vpi ⩽ 1 in Ω \ E0,

vpi = 1 on ∂E0.

Then a subsequence of (1−pi) log vpi converges in C
0
loc(Ω\E0) to a solution of IVP(((Ω;E0))).

Lemma 3.7.2 is obtained by combining Lemma 3.7.1 with interior and boundary gra-
dient estimates in [65, Theorem 1.1 and (1.7)].

The goal of this section is to prove the following theorem, which is to be included in
[14]. We also refer to the introduction chapter for more backgrounds.
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Theorem 3.7.3 (= Theorem E).
Let Ω ⋐M be a smooth domain, and E0 ⋐ Ω be a C1,1 domain. Let vp ∈ W 1,p(Ω\E0)

solve the boundary value problem
∆pvp = 0 in Ω \ E0,

vp = 1 on ∂E0,

vp = 0 on ∂Ω,

(3.7.1)

and set up = (1 − p) log vp. Then a subsequence of up converges in C0
loc(Ω \ E0) to the

unique solution of IVP(((Ω;E0)))+OBS(((∂Ω))), as p→ 1.

The proof makes essential use of the following observation due to Benatti-Pluda-
Pozzetta. The author thanks Luca Benatti for pointing out this result.

Theorem 3.7.4 ([15, Theorem 2.8]).
Let M be complete, noncompact, and E0 ⋐ M be a C1,1 domain. Suppose that there

exists a proper solution w of IVP(((M ;E0))). Then for all domain Ω with E0 ⋐ Ω ⋐M , there
is a family of positive p-harmonic functions vp, such that

vp|∂E0 = 1, lim
p→1

(1− p) log vp = w in C0(Ω \ E0).

Proof of Theorem 3.7.3.
The convergence (up to a subsequence) ũ = limp→1 up follows from Lemma 3.7.2. There

we also know that ũ solves IVP(((Ω;E0))). Next, let u the solution of IVP(((Ω;E0)))+OBS(((∂Ω)))
given by Theorem 3.6.1. Our goal is to show that ũ = u. By Theorem 3.6.1(iv), namely
the maximality of u, it suffices to show that ũ ⩾ u in Ω \ E0.

Let us briefly recall the construction of u. We assume the setups made in Subsection
3.6.1. Fix a sequence δi → 0. Recall that we conidered the slightly larger domain Ωδi

and the weight function ψδi . By Lemma 3.6.2 and keeping in mind that weighted IMCF
is equivalent to the usual IMCF under a conformal change, the domain

(Ωδi , g
′
i), where g′i = e2ψδi/(n−1)g

admits a proper subsolution of IMCF (which is the function uδi in Lemma 3.6.2). There-
fore, there is a proper solution wi of IVP(((Ωδi , g

′
i;E0))), by Theorem 2.4.1. For any λi ∈ (0, 1)

and sufficiently small εi, Lemma 3.6.3 yields a solution ui = uεi,δi,λi of the regularized equa-
tion (3.6.10)∼ (3.6.12). Recall that (3.6.10)∼ (3.6.12) is the same as (2.4.9)∼ (2.4.11)
with the domain “FL” = Ωλiδi and the metric given by g′i. By the convergence statement
in Theorem 2.4.8, for each individual i we may choose λi sufficiently close to 1 and then
εi sufficiently small (depending on i, δi, λi), so that

∥ui − wi∥C0(Ω\E0) ⩽ i−1. (3.7.2)

By Theorem 3.7.4 above, for each i there exists pi close enough to 1, such that there is a
function fi ∈ Lip(Ω \ E0) with

fi|∂E0 = 0, e
fi

1−pi being pi-harmonic, ∥fi − wi∥C0(Ω\E0) ⩽ i−1. (3.7.3)

Note that the function vp in (3.7.1) is the minimal p-harmonic function in Ω with vp|∂E0 =
1. Hence vp ⩽ e−fi/(p−1), which implies

upi ⩾ fi in Ω \ E0. (3.7.4)
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Combining (3.7.2) (3.7.3) (3.7.4), we obtain

upi ⩾ ui − 2i−1 in Ω \ E0.

Taking i→∞, it follows that ũ ⩾ u in Ω \ E0.



Chapter 4

Innermost solutions

Let E0 ⊂M be a C1,1 initial value. Recall that u is a maximal or innermost solution
of IVP(((M ;E0))), if u ⩾ v for any other solution v of IVP(((M ;E0))). In this section, we prove
the existence and basic properties of such a solution, including Theorem C and Lemma
1.3.3. Section 4.3 is based on joint work with O. Chodosh and Y. Lai [30].

4.1 Existence and properties

The following is a restatement of Theorem C.

Theorem 4.1.1 (existence).
Let (M, g) be a (possibly incomplete) smooth Riemannian manifold, and E0 ⊂M be a

(possibly unbounded) C1,1 domain. Then there exists, up to equivalence, a unique maximal
solution of IVP(((M ;E0))).

Proof. Find a sequence of precompact C1,1 domains Ei
0, such that E1

0 ⊂ E2
0 ⊂ · · · ⊂ E0,

and
⋃
i⩾1E

i
0 = E0, and that for all K ⋐ M , the sets Ei

0 ∩ K eventually stablize (i.e.

Ei
0 ∩ K = Ei+1

0 ∩ K = Ei+2
0 ∩ K = · · · for large enough i). Next, find a sequence of

smooth precompact domains Ωi ⋑ Ei+1
0 such that Ω1 ⋐ Ω2 ⋐ · · · ⋐M and

⋃
i⩾1 Ωi = M .

Let ui be the (unique) solution of IVP(((Ωi;E
i
0)))+OBS(((∂Ωi))), given by Theorem 3.6.1.

Applying Corollary 3.3.20 to each Ωi, we have u1 ⩾ u2 ⩾ u3 ⩾ · · · outside E0. By
the interior gradient estimates (3.6.1) and Arzela-Ascoli theorem, some subsequence of ui
converge in C0

loc to a function u ∈ Liploc(M \ E0). By Theorem 2.3.3, u is a calibrated
weak solution in M \ E0. Since (3.6.1) provides a uniform gradient estimate up to ∂E0,
the resulting function u is Lipschitz up to ∂E0, and satisfies u ⩾ 0, u|∂E0 = 0. Extending
u by negative values inside E0, we obtain a solution of IVP(((M ;E0))).

It remains to show that u is maximal. Suppose v ∈ Liploc(M) is another solution of
IVP(((M ;E0))). For each i we find functions vi ∈ Liploc(Ωi), such that vi = v on Ωi \E0, and
vi = 0 on E0 \ Ei

0, and vi < 0 on Ei
0. By Definition 2.1.2 it can be verified that vi is a

subsolution of IVP(((Ωi;E
i
0))). Then by Corollary 3.3.20, we obtain vi ⩽ ui on Ωi \Ei

0, hence
v ⩽ ui on Ωi \E0. As u is the descending limit of ui, it follows that v ⩽ u on M \E0.

For our future convenience, let us summarize the following construction lemma. Its
proof can be extracted from above by taking E1

0 = E2
0 = · · · = E0.

Lemma 4.1.2. Suppose E0 ⋐ Ω1 ⋐ Ω2 ⋐ · · · ⋐ M , where E0 is a C1,1 domain, and
each Ωi is a smooth domain, and

⋃
Ωi = M . Let ui ∈ Liploc(Ωi) be the solution of

122
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IVP(((Ωi, E0)))+OBS(((∂Ωi))) given by Theorem 3.6.1. Then we have u1 ⩾ u2 ⩾ u3 ⩾ · · · , and
ui → u in C0

loc(M \ E0) where u is the maximal solution of IVP(((M ;E0))).

The following theorem summarizes the useful properties of maximal solutions.

Theorem 4.1.3 (properties of maximal solutions).
Let M, g,E0 be as in Theorem 4.1.1, and u be the maximal solution of IVP(((M ;E0)))

given there. Then the following hold.
(i) We have the interior gradient estimate

|∇u|(x) ⩽ sup
∂E0∩B(x,r)

H+ +
C(n)

r
, x ∈M \ E0, r ⩽ σ(x;M, g),

where H+ denotes the positive part of the mean curvature of ∂E0, and σ(x;M, g) is
as in Definition 2.4.2.

(ii) If E0 is connected, then Et is connected for all t > 0. Moreover, M \ Et does not
have compact connected components.

(iii) If E0 ⋐M , then we have P (Et) ⩽ etP (E0).

Proof. By the proof of Theorem 4.1.1, the maximal solution u arises as a limit of the
solutions ui of IVP(((Ωi;E

i
0)))+OBS(((∂Ωi))), where Ei

0 and Ωi are precompact exhaustions of E0

and Ω as defined in Theorem 4.1.1. Moreover, u does not depend on the choice of these
exhaustions (since it is a unique object).

Given this setup, item (i) follows by passing Theorem 3.6.1(i) to the limit. Item (iii)
follows by passing Corollary 3.3.14 to the limit and using the lower semi-continuity of
perimeter. It remains to prove (ii). Given that E0 is connected, we claim that there is a
sequence of connected precompact C1,1 domains E1

0 ⊂ E2
0 ⊂ · · · ⊂ E0 with

⋃
Ei

0 = E0.
Once this is proved, it follows by Lemma 3.3.9 that each Et(ui) is connected. This then
implies that Et(ui) is connected as well: otherwise, since ui ∈ C0(Ωi) by Theorem 3.6.1(i),
there will be a slightly smaller t′ so that Et′(ui) is disconnected, contradiction. Finally,
as Et(u) =

⋃
i⩾1Et(ui), it follows that Et(u) is connected.

The connected exhaustion {Ei
0} is constructed as follows. Fix a basepoint x0 ∈ E0.

We start with an arbitrary precompact C1,1 exhaustion E
1

0 ⊂ E
2

0 ⊂ · · · ⊂ E0, then let

Ei
0 be the connected component of E

i

0 containing x0. It follows that {Ei
0} is also an

exhaustion: for any x ∈ E0, there is a path γ ⋐ E0 joining x and x0. We have γ ⋐ Ei
0 for

all large i, hence γ ⋐ Ei
0 as well, hence x ∈ Ei

0.

When Ω is a non-compact domain, the fact that u solves IVP(((Ω;E0)))+OBS(((∂Ω))) does
not imply that it is the maximal solution of IVP(((Ω;E0))). Intuitively, the maximal solution
respects not only the obstacle ∂Ω, but also the “invisible obstacle” at infinity. Note that
item (iii) may be a strict inequality, whereas we always have equality for proper solutions.

We mention the following examples of maximal solutions.
1. In Choi-Daskalopoulos [31], one considers the (smooth) IMCF with with a con-

vex, non-compact, C1,1 initial domain E0 ⊂ Rn. A compact approximation argument is
employed to obtain a solution: one finds bounded convex domains E1

0 ⊂ E2
0 ⊂ · · · with⋃

i⩾1E
i
0 = E0, and then take ui to be the proper (hence maximal) solution of IVP(((Rn;Ei

0))),
and finally take the descending limit u = limi→∞ ui. Arguing similarly as above, it follows
that u is the maximal solution of IVP(((Rn;E0))).

2. In the setting of Remark 1.3.2, the function

u0(r) = (n− 1) log
[
f(r)/f(r0)

]
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is the maximal solution of IVP(((Ω; {r < r0}))).
3. Consider E0 a half-space in the hyperbolic space, and let u be the maximal solution

of IVP(((Hn;E0))). By uniqueness, the function u|Hn\E0 must be invariant under any isometry
that preserves E0. Therefore, the level sets of u are equi-distance sets from E0. This
reduces the flow to a one-dimension problem: the maximal solution must be

u = (n− 1) log cosh d(x,E0).

Remark 4.1.4. We note that the connectedness of level sets (Theorem 4.1.3(ii)) only
holds for maximal solutions, but not general solutions. A concrete counterexample is as
follows. Let E0, E

′ ⊂ Hn be two disjoint half-spaces that are sufficiently far separated.
Denote l1 = arccosh

(
e1/(n−1)

)
and l2 = arccosh

(
e2/(n−1)

)
. Set u ∈ Liploc(Hn) such that

(1) u|E0 < 0, and u|N(E0,l2) = (n− 1) log cosh d(·, E0);
(2) u|E′ ≡ 1, and u|N(E′,l1) = 1 + (n− 1) log cosh d(·, E ′);
(3) u|Hn\(N(E0,l2)∪N(E′,l1)) ≡ 2.

It follows that u solves IVP(((Hn;E0))), but E2(u) is not connected.

E0

(u < 0)
E ′

u ≡ 1

u ≡ 2

Figure 4.1: The example in Remark 4.1.4.

4.2 Isoperimetry and properness revisited

In this section, we give a second proof of Theorem A by replacing the conic cutoff
argument in Section 2.5 with the IMCF with outer obstacle. This proof is conceptually
cleaner (but not actually simpler since it relies on Theorem 3.6.1).

Recall the notion of isoperimetric profile ip(v) and its formal inverse sip−1(a) from
Definition 2.5.1, as well as the following condition

lim inf
v→∞

ip(v) =∞ and

∫ v0

0

dv

ip(v)
<∞ for some v0 > 0, (4.2.1)

which we assumed in Theorem A. As a consequence of these conditions, we have noticed
by Corollary A.3.3 that the quantity∫ sip−1(A)

0

dv

ip(v)

is finite for all A > 0.
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A second proof of Theorem A.
Fix an exhaustion E0 ⋐ Ω1 ⋐ Ω2 ⋐ · · · , with Ωi smooth and

⋃
i⩾1 Ωi = M . Let ui be

the solution of IVP(((Ωi;E0)))+OBS(((∂Ωi))) given by Theorem 3.6.1. Fix a basepoint x0 ∈ E0,
and denote B(r) = B(x0, r). For each i ∈ N, t > 0, and for almost every r > diamE0

(so that ∂B(r) is rectifiable), we apply Lemma 3.4.2 (the excess inequality with obstacle)
with F = Ωi+1 \B(r) to find

P
(
Et(ui)

)
⩽ P

(
Et(ui) ∩B(r)

)
+ (et − 1)P

(
B(r);Et(ui)

)
.

The remining argument is similar to that of Lemma 2.5.5: using the decomposition iden-
tities (A.1.15), this further implies

Hn−1
(
Et(ui);B(r)(0)

)
⩽ etP

(
B(r);Et

)
for a.e. r > diamE0. (4.2.2)

Consider V (r) := |Et(ui) \B(r)|, so V ′(r) = −P
(
B(r);Et(ui)

)
for a.e. r. We also have

Hn−1
(
Et(ui);B(r)(0)

)
+ P

(
B(r);Et

)
= P

(
Et(ui) \B(r)

)
⩾ ip(V (r)) (4.2.3)

for a.e. r. Combining (4.2.2) (4.2.3), we obtain

V ′(r) ⩽ − ip(V (r))

et + 1
for a.e. r > diamE0. (4.2.4)

In addition, V (diamE0) ⩽ |Et(ui)| ⩽ sip−1
(
P (Et(ui))

)
⩽ sip−1

(
etP (E0)

)
, where we used

the sub-exponential growth of area (Corollary 3.3.14). Solving (4.2.4) yields

V (r) ≡ 0 for all r > r∗(t) := diamE0 + (1 + et)

∫ sip−1(etP (E0))

0

dv

ip(v)
.

This implies Et(ui) ⊂ B(r∗(t)) for all t > 0, which is a bound independent of i. Now we
take the descending limit u = limi→∞ ui. Arguing as in Theorem 4.1.1, such limit exists
and is the maximal solution of IVP(((M ;E0))). The bounds Et(ui) ⊂ B(r∗(t)) pass to the
limit and gives Et(u) ⊂ B(r∗(t)) ⋐M . Hence u is proper.

4.3 The effect of bounded geometry

Suppose M is complete, noncompact and connected. We say that M has bounded
geometry, if it holds

|Rm | ⩽ Λ2, inj ⩾ Λ−1 (BG)

for some constant Λ > 0. The bounded geometry condition has several strong implications
on the geometry of M :

(i) The volume of B(x, 1) is bounded below independently of x. This follows from the
classical comparison geometry.

(ii) We have a uniform Neumann isoperimetric inequality

min
{∣∣B(x, 1) ∩ E

∣∣, ∣∣B(x, 1) \ E
∣∣} ⩽ C(n,Λ)P

(
E;B(x, 1)

) n
n−1 , (4.3.1)

for all x ∈ M and all sets E with locally finite perimeter. This is a consequence of
the abstract Haj lasz-Koskela theorem; see [95, Theorem 7.1.13].
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(iii) The regular radius σ(x;M) in Definition 2.4.2 is bounded below in terms of Λ.
(iv) The C0 norm of the metric near any x ∈ M (see the discussions around (A.2.2)) is

bounded above in terms of Λ.

On manifolds with bounded geometry, the maximal IMCF shows much better behav-
ior. In particular, the level set always stay compact before it disappears at infinity. We
define the following solution types:

Definition 4.3.1. Let u be a solution of IVP(((M ;E0))). We say that:
(i) u is sweeping, if T := sup(u) ∈ (0,∞), and Et ⋐M for all t < T , and ET = M .
(ii) u is instantly escaping, if T := sup(u) ∈ (0,∞), and ET ⋐ M , and u ≡ T in

M \ ET . In both cases, we call T the escape time of u.

See Figures 1.14 and 1.15 for examples of sweeping and instantly escaping flows. Our
goal in this section is to prove the following:

Theorem 4.3.2 (= Lemma 1.3.3).
Suppose M is complete, noncompact, one-ended, and satisfies (BG). Then there is a

constant A = A(Λ) > 0 such that: for any C1,1 domain E0 ⋐ M with P (E0) ⩽ A, the
maximal solution u of IVP(((M ;E0))) is either proper, sweeping, or instantly escaping.

Let T be as in Definition 4.3.1, or T = +∞ for the proper case. Then

eTP (E+
0 ) = inf

{
lim inf
i→∞

P (Fi) : F1 ⋐ F2 ⋐ · · · ⋐M,

Fi has finite perimeter,
⋃

Fi = M
}
.

(4.3.2)

In (4.3.2), note that E+
0 ⋐M by the conclusion on the solution type of u. Hence, E+

0

is the minimizing hull of E0 in M . The right hand side of (4.3.2) is different from that in
Lemma 1.3.3. However, those two expressions are equal since sets with finite perimeter
are smoothable (Theorem A.1.3). All the three conditions in Theorem 4.3.2, namely
completeness, one-endedness and bounded geometry, are not removable: see Figure 1.16
and 1.17 for examples.

Theorem 4.3.2 is the consequence of a chain of intermediate results, as follows.

Lemma 4.3.3 (regularity and density bounds).
Let M satisfy (BG), and u be a solution of IMCF(((Ω))) for some domain Ω ⊂ M .

Moreover, assume |∇u| ⩽ L in Ω. Then for all t ∈ R the following hold:
(i) for all x ∈ ∂Et and r ⩽ min

{
Λ−1, d(x, ∂Ω)/2

}
, we have the density bound

P
(
Et;B(x, r)

)
⩾ c(n, L,Λ)rn−1;

(ii) if n ⩽ 7, and M further satisfies |∇k Rm | ⩽ Λ′, ∀ 1 ⩽ k ⩽ 5, then ∂Et(u) is a
C1,α surface. For each x ∈ ∂Et, we have ∥Et∥C1,α(x) ⩽ C

(
n, α, L,Λ,Λ′, d(x, ∂Ω)

)
. See the

discussions around (A.2.4) for the precise definition of the C1,α norm.

Proof. The gradient bound implies the almost perimeter-minimizing condition

P (Et ∩K) ⩽ P (F ∩K) + L|Et∆F |, for all F with Et∆F ⋐ K ⋐ Ω.

Then item (ii) follows directly from Theorem A.2.3.
For item (i), we set R = min

{
Λ−1, d(x, ∂Ω)/2

}
. By Theorem A.2.4, there is a constant

c = c(n, L,Λ) so that P
(
Et;B(x, r)

)
⩾ c(n)rn−1 for all r ⩽ cR. But in the range

cR ⩽ r ⩽ R, we simply estimate

P
(
Et;B(x, r)

)
⩾ P

(
Et;B(x, cR)

)
⩾ c(n)(cR)n−1 ⩾

(
c(n)cn−1

)
rn−1.
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Lemma 4.3.4 (compactness and diameter bound).
Let M be complete, connected, one-ended, satisfying (BG), and E0 ⋐M be connected.

Let u be the maximal solution of IVP(((M ;E0))). Suppose Et ̸= M for t > 0. Then:
(i) it actually holds Et ⋐M ,
(ii) if ∂Et is connected, then

diam(∂Et) ⩽ C
(
n,Λ, t, P (E0), diam(∂E0)

)
. (4.3.3)

The lemma’s condition does not imply the connectedness of ∂Et, see Figure 4.2.

E0

∂Et

Figure 4.2: A maximal solution with disconnected ∂Et

Proof of Lemma 4.3.4.
Let us first prove that ∂Et ⋐M . Otherwise, we can find infinitely many disjoint balls

B(xi, 1/2Λ) with x ∈ ∂Et, d(xi, E0) ⩾ 1/Λ. Recall by Theore 4.1.3(i) that

|∇u| ⩽ C(Λ) in
{
d(·, E0) ⩾ 1/Λ

}
.

Thus, Lemma 4.3.3(i) provides a uniform lower bound P
(
Et;B(xi, 1/2Λ)

)
⩾ c(Λ). This

contradicts the fact P (Et) ⩽ etP (E0) from Theorem 4.1.3(i).
Next we show that Et ⋐ M . By Theorem 4.1.3(ii) and our condition, we know

that Et is connected and M \Et is noncompact and nonempty. Since M is one-ended and
∂Et ⋐M , we may find a domain K such that ∂Et ⋐ K ⋐M , and M \K is connected and
noncompact. Since Et is connected and ∂Et∩(M \K) = ∅, we have either Et∩(M \K) = ∅
or Et ⊃M \K. The first case implies Et ⊂ K ⋐M . The second case implies M \Et ⊂ K,
which is impossible.

Now we assume that ∂Et is connected. Setting

N =
⌊
Λ
(

diam(∂Et)/2− diam(∂E0)− 1/Λ
)⌋
,

we can find N points xi ∈ ∂Et such that d(xi, E0) ⩾ 1/Λ, and the balls B(xi, 1/2Λ) are
pairwise disjoint. This implies (4.3.3) by the same area counting argument as above.

In the following lemma, recall Definition 2.5.1 for the notion of isoperimetric profile.

Lemma 4.3.5. AssumeM is complete, connected, noncompact, and satisfies (BG). Then

ip(v) ⩾ C(Λ)−1 min
{

1, v(n−1)/n
}
, ∀ v > 0. (4.3.4)

Proof. Note that (BG) implies a uniform lower bound on the volume of balls: there exists
V = V (Λ) > 0 such that

|B(x, 1)| ⩾ V, ∀x ∈M.

This further implies |M | =∞. Suppose E ⋐M . We divide into two cases.
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Case 1: |E ∩ B(x, 1)| ⩾ V/2 for some x ∈ M . By continuity, we can find another
point x′ ∈M such that |E∩B(x′, 1)| = V/2. Then by the isoperimetric inequality (4.3.1),
we obtain P (E) ⩾ P

(
E;B(x′, 1)

)
⩾ C(Λ)−1 for this case.

Case 2: |E ∩ B(x, 1)| < V/2 for all x ∈ M . Then (4.3.1) implies |E ∩ B(x, 1)| ⩽
C(Λ)P

(
E;B(x, 1)

)n/(n−1)
for all x ∈M . By volume doubling, we may find finitely many

balls {B(xi, 1)}mi=1 that covers Ω, whose covering multiplicity is bounded by C(Λ). Thus

|E| ⩽
m∑
i=1

|E ∩B(xi, 1)| ⩽ C(Λ)
m∑
i=1

P
(
E;B(xi, 1)

) n
n−1

⩽ C(Λ)
( m∑
i=1

P
(
E;B(xi, 1)

)) n
n−1

⩽ C(Λ)P (E)
n
n−1 .

Then (4.3.4) follows by combining the two cases.

We are in a position to prove the main result.

Proof of Theorem 4.3.2.
Combining Lemma 4.3.5 and Theorem 2.5.2, there exists A = A(n,Λ) > 0 so that

the following holds: for all E0 with P (E0) ⩽ A, there exists a solution u′ of IVP(((M ;E0)))
with Et(u

′) ⋐ M for some t > 0. Let u be the maximal solution of IVP(((M ;E0))), we have
Et(u) ⊂ Et(u

′) ⋐M for the same t.
Let T ′ := sup

{
t ⩾ 0 : Et ⋐ M

}
, thus T ′ > 0. If T ′ = ∞ then u is proper. Now

assume T ′ <∞. By Lemma 4.3.4(i), we must have Et = M for all t > T ′. Therefore

T ′ = sup(u).

Finally, consider ET ′ : if ET ′ ⋐ M then u is instantly escaping by Definition 4.3.1. Oth-
erwise, we must have ET ′ = M by Lemma 4.3.4(i) again. Hence M =

⋃
t<T ′ Et with

Et ⋐M for each t < T ′. This implies that u is sweeping.
It remains to show (4.3.2). Denote the right hand side of (4.3.2) by S. It is easier

to see that S ⩾ eTP (E+
0 ). Indeed, for all t < T we have P (Et) = etP (E+

0 ) by Lemma
2.1.10(ii). On the other hand, since Et is outward minimizing in M , for each exhaustion
{Ki} we have P (Et) ⩽ P (Ki) for all large i. Hence S ⩾ etP (E+

0 ) for all t < T , which
implies S ⩾ eTP (E+

0 ).
Now we consider other direction S ⩽ eTP (E+

0 ). Note that this is trivial when u is
proper or sweeping, since the sub-level sets of u serve as a candidate exhaustion. The
only remaining case is when u is instantly escaping. Recall that this means ET (u) ⋐ M
where T = sup(u). By exponential growth, we have

eTP
(
E+

0 (u)
)

= P
(
ET (u)

)
.

For this case we need to recall the process of constructing maximal solutions. Fix a
sequence of smooth domains ET (u) ⋐ Ω1 ⋐ Ω2 ⋐ · · · ⋐ M and

⋃
Ωl = M . By Lemma

4.1.2, we know that the solutions ul of IVP(((Ωl;E0)))+OBS(((∂Ωl))) converge to u in C0
loc(M\E0).

By the maximality of ul in each Ωl, we have ET (ul) ⊂ ET (u) ⋐ Ωl. Then by the maximum
principle (Theorem 2.1.12(iii)), we actually have ET (ul) = ET (u) for all l. For each ε > 0,
note the following facts:

1.
⋃
l⩾1ET+ε(ul) = M . This follows from ul

C0
loc−−→ u ⩽ T .
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2. By sub-exponential growth (Corollary 3.3.14), we have

P
(
ET+ε(ul)

)
⩽ eεP

(
ET (ul)

)
= eεP

(
ET (u)

)
for all l.

Fix p ∈ E0. We can inductively choose a sequence lk →∞ so that

ET+1/k(ulk) ⋑ B(p, k) ∪ ET+1/(k−1)(ulk−1
).

Setting Fk = ET+1/k(ulk), we find that {Fk} is a valid candidate exhaustion that shows
S ⩽ P

(
ET (u)

)
= eTP

(
E+

0 (u)
)
.



Chapter 5

IMCF and scalar curvature

This chapter is devoted to applications of the weak IMCF to scalar curvature. For a
Riemannian manifold (M, g), we use Rg to denote the scalar curvature of g (and we often
write R for simplicity). We will call a Riemannian manifold PSC, if R > 0 everywhere.
Let us recall that all manifolds are assumed to be oriented in this thesis.

It is helpful to know the following classical theorems regarding PSC 3-manifolds. For
a detailed account, we refer to the book of Dan A. Lee [69]. The following theorem is due
to Schoen-Yau, and is one of the most fundamental facts about scalar curvature.

Theorem 5.0.1 ([97]). Let Σ ⊂M be a closed two-sided stable minimal surface.

(i) If R ⩾ 0, then Σ is topologically either a 2-torus or a 2-sphere.
(ii) If R ⩾ λ > 0, then Σ must be a 2-sphere, with |Σ| ⩽ 8πλ−1.

To prove Theorem 5.0.1, recall that the stability condition and traced Gauss equation
imply that ∫

Σ

|∇φ|2 +KΣφ
2 ⩾

1

2
λ

∫
Σ

φ2, ∀φ ∈ C∞(Σ).

Then the result follows by taking φ = 1.

The following is a topological classification of closed PSC 3-manifolds.

Theorem 5.0.2 ([69, Theorem 1.29]). If M3 is a closed and PSC, then we have

M ∼= (S2 × S1)# · · ·#(S2 × S1)#(S3/Γ1)# · · ·#(S3/Γk),

where each S3/Γk is a spherical space form, with some finite group Γk acting freely on S3.

The following theorem, known as the macroscopic dimension theorem, characterizes
the rough geometry of closed 3-manifolds with uniformly positive scalar curvature.

Theorem 5.0.3 ([48, Corollary 10.11], see also [73]).

If M3 is closed and satisfies R ⩾ λ > 0, then there is a graph G, and a continuous
map f : M → G, such that diam(f−1(p)) ⩽ 12πλ−1/2 for all p ∈ G.

Combining Theorem 5.0.2 and 5.0.3, we have the following description of a closed
3-manifold with R ⩾ λ > 0: M looks like a web in which each edge has S2 section. The
length of each edge is unrestricted but the width of a S2 section is at most Cλ−1/2. See
Figure 5.1 below.

130
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S3/Γ1

S3/Γ2

−→

−→⩽ Cλ−1/2
→S2

Figure 5.1: closed 3-manifolds with R ⩾ λ > 0.

5.1 More properties of the weak IMCF

This chapter concerns the weak IMCF inside 3-manifolds. By the regularity Lemma
2.1.7, each ∂Et is a C1,α hypersurface. Furthermore, we will not encounter delicate issues
involving geometric measure theory. Hence, let us adopt the simpler notation

|∂E| := P (E).

Recall the following property of maximal solutions. It also applies to proper solutions
since proper solutions are maximal.

Lemma 5.1.1. Let E0 ⋐M be connected, and u be the maximal solution of IVP(((M ;E0))).
Then each Et is connected, and M \ Et does not have compact connected components.

Proof. This is a special case of Theorem 4.1.3(ii).

This has the following topological consequence.

Corollary 5.1.2. Suppose E0 ⋐M is connected, and u is a proper solution of IVP(((M ;E0))).
Then for every t > 0, the map H2(∂Et,Z) → H2(M \ E0,Z) induced by embedding is
injective.

Proof. Denote Mt = Et \E0 and M ′
t = M \Et. By Lemma 5.1.1 and the Lefschetz duality

[50, Theorem 3.43 and Exercise 3.3.35], we have

H3(Mt, ∂Et,Z) = H0(Mt, ∂E0,Z) = 0.

Then, by Lemma 5.1.1 and Lefschetz duality again, we have

H3(M
′
t , ∂Et,Z) = H0

c (M ′
t ,Z) = 0.

Hence by the excision theorem [50, Theorem 2.20],

H3(M \ E0, ∂Et,Z) ∼= H3(Mt, ∂Et,Z)⊕H3(M
′
t , ∂Et,Z) = 0.

The corollary then follows from the long exact sequence of relative homology

0 = H3(M \ E0, ∂Et,Z)→ H2(∂Et,Z)→ H2(M \ E0,Z)→ · · · .

Next, we state the weak Geroch monotonicity formula:

Theorem 5.1.3.
Suppose M is a 3-manifold, E0 ⋐M is a C1,1 initial value, and u is a proper solution

of IVP(((M ;E0))). Then each ∂Et is a C
1,1 surface, and for all 0 ⩽ t1 < t2, we have∫

∂Et2

H2 ⩽
∫
∂Et1

H2 +

∫ t2

t1

[
4πχ(∂Es)−

∫
∂Es

R− 1

2

∫
∂Es

H2
]
ds. (5.1.1)
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Proof. The C1,1 regularity is proved in Heidusch’s thesis [51]. Inequality (5.1.1) is exactly
[53, H2 Growth Formula 5.7].

Solving the ODE inequality (5.1.1), we obtain:

Corollary 5.1.4. Assume the same setup as in Theorem 5.1.3, and let t > 0. If R ⩾ λ
on Et \ E0, and E0 is outward minimizing, then∫

∂Et

H2 ⩽ e−t/2
∫
∂E0

H2 + 4πe−t/2
∫ t

0

es/2χ(∂Es) ds−
2

3
λ|∂E0|

(
et − e−t/2

)
. (5.1.2)

Proof. For 0 ⩽ s ⩽ t, we denote H(s) =
∫
∂Es

H2, χ(s) = χ(∂Es), F (s) =
∫ t
s
H(r) dr.

Since E0 is outward minimizing, we have exponential growth |∂Es| = es|∂E0|. Applying
(5.1.1) with t1 = s, t2 = t, and noting that

∫
Σr
R ⩾ λer|∂E0|, for almost every s it holds

d

ds

[
es/2F (s)

]
= es/2

[1

2
F (s)−H(s)

]
⩽ 4πes/2

∫ t

s

χ(r) dr − λ|∂E0|es/2
(
et − es

)
− es/2H(t).

Integrating from 0 to t, this implies

−F (0) ⩽ 4π

∫ t

0

2
(
er/2 − 1

)
χ(r) dr − λ|∂E0|

(4

3
e3t/2 − 2et +

2

3

)
− 2
(
et/2 − 1

)
H(t).

Combining this and another use of (5.1.1) with t1 = 0, t2 = t, we obtain (5.1.2).

5.2 A topological gap theorem for the π2 – systole

Let M3 be closed, connected, and oriented. If M has nonvanishing second homotopy
group, then we define the π2 – systole of M by

sys π2(M, g) = inf
{
|S2|f∗g : f : S2 →M is an immersion with [f ] ̸= 0 ∈ π2(M)

}
,

where π2(M) denotes the set of free homotopy classes of maps S2 → M . By a theorem
of Meeks and Yau [85], the π2 – systole is always achieved by a smooth minimizer (which
is either an embedded sphere or a two-fold cover of an embedded RP2).

In [18], Bray, Brendle and Neves considered π2-systolic inequalities in the context of
uniformly positive scalar curvature. For manifolds M with nonvanishing second homotopy
group, one has the sharp inequality

sys π2(M, g) ·min
M

Rg ⩽ 8π, (5.2.1)

where Rg denotes the scalar curvature of g. For the rigidity case, it is proved in [18] that

sys π2 ·min(R) = 8π ⇔ M is isometrically covered by a round S2 × S1. (5.2.2)

Here, a round S2 × S1 means the product of an S1 with an S2 with constant curvature.
Inequality (5.2.1) follows by applying Theorem 5.0.1 to the area minimizer.
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Analogues of (5.2.1) were obtained in some other contexts. In Bray-Brendle-Eichmair-
Neves [17], the “RP2-systole” of a closed 3-manifold is considered, which is defined by
A := inf

{
area of embedded RP2

}
. There it is proved that A · min(R) ⩽ 12π, with the

model case being a round RP3. The non-compact version of (5.2.1) was proved by Zhu
[116] using Gromov’s µ-bubble technique [47]. For the case of negative scalar curvature
bounds, Nunes [94] and Lowe-Neves [75] proved sharp area lower bounds for high-genus
minimizing surfaces. The rigidity cases there are characterized respectively by product
metrics Σ× R (where Σ has genus at least 2) and hyperbolic metrics.

The main theorem of this section is the following:

Theorem 5.2.1 (= Theorem F). Suppose M is a closed 3-manifold such that π2(M) ̸= 0
and M is not covered by S2 × S1. Then for any metric g on M we have

sys π2(M, g) ·min
M

Rg ⩽ 24π · 2−
√

2

4−
√

2
(≈ 5.44π). (5.2.3)

Thus, (5.2.1) is improved when we topologically exclude its rigidity case (5.2.2). In par-
ticular, the comparison between (5.2.1) and (5.2.3) shows that a universal gap is present
in the π2 – systolic inequality. To supply a further geometric understanding, we state the
following local version:

Theorem 5.2.2. Let M be diffeomorphic to the 3-sphere with k balls removed (k ⩾ 3).
Suppose g is a smooth metric on M such that
(i) all the components of ∂M are stable minimal surfaces;
(ii) in the interior of M , there is no embedded stable minimal surface representing a

nontrivial element in the integral homology H2(M,Z).
Let A0 be the minimum of the area of all connected components of ∂M . Then

A0 ·min
M

(Rg) ⩽ 24π · 2−
√

2

4−
√

2
. (5.2.4)

Theorem 5.2.2 suggests that Theorem 5.2.1 is localized at the “non-cylindrical locus” of
the manifold. Let M have positive scalar curvature and satisfy the hypotheses of Theorem
5.2.1. For simplicity, let us assume M = (S2×S1)#(S2×S1). By cutting along a maximal
disjoint collection of stable minimal surfaces, we decompose M into building pieces (this
is possible for generic metrics [111]; see similar arguments in [73, 103]). Each building
piece is diffeomorphic to a sphere with disks removed, and its boundary consists of stable
minimal spheres. See Figure 5.2 for an example of decomposition, in comparison with a
decomposition of S2 × S1. The topology of M implies the following: there must exist a

Σ1

Σ2

Σ3

Figure 5.2: Decompositions of S2 × S1 and (S2 × S1)#(S2 × S1).

non-cylindrical piece, namely, a piece with three or more boundary components (such as
the shaded piece in Figure 5.2). Theorem 5.2.2 then yields min

{
|Σ1|, |Σ2|, |Σ3|

}
⩽ 5.44π
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for such a piece. Furthermore, we can arrange the decomposition such that all the Σi are
nontrivial in π2(M). Thus this shows a way to recover the global inequality (5.2.3) from
the local one (5.2.4). See Subsection 5.2.3 for the full argument. We remind that the
formal proof of the main theorems goes in the opposite direction: we first prove Theorem
5.2.1, then obtain Theorem 5.2.2 via a doubling argument.

This result is also partially motivated by the stability problem for scalar curvature.
Concerning the inequality (5.2.1), the stability problem asks the following: if we relax the
rigidity condition in (5.2.2) to almost rigidity, i.e. if we impose sys π2 ·min(R) ⩾ 8π − ε,
whether the manifold M remains close to a round cylinder (or its quotient) in some sense.
In this respect, Theorem 5.2.1 confirms that M must be topologically the same as rigidity,
thus establishing a topological stability. On the other hand, the metric stability of (5.2.1)
remains an open question. The weak control of scalar curvature on the metric allows
various pathological phenomena. We refer the reader to the survey of Sormani [103], and
references therein, for an overview of this topic.

Let us briefly sketch the proof of Theorem 5.2.1. Let Σ ⊂ M an area minimizer
in π2(M). Consider the universal cover of M (denoted by M̃), and a lift of Σ onto M̃

(denoted by Σ̃). Then we solve a weak IMCF with initial value Σ̃. Figure 5.3 below shows
the behavior of the flow in the universal cover of (S2×S1)#(S2×S1), which resembles the

shape of a binary tree. So the IMCF starts with Σ̃ which sits at the bottom of the figure,
and the flow moves upwards. The jumpings are marked with shadows in the figure. At

M̃

Σ̃

∂Et

∂ET

∂E+
T

∂E+
T

⩾sys π2 ⩾sys π2

Area = sys π2

Figure 5.3: The weak IMCF in M̃ starting with Σ̃.

a certain time T , the surface splits into two components which will individually continue
evolving in their own branches. There are several key points to be mentioned.

1. The existence of proper solution is a consequence of Theorem A and the exponential
growth of M̃ . Meanwhile, one may observe that there does not exist any proper IMCF
on the universal cover of S2 × S1. This is where the topological condition gets involved.

2. The splitting time T satisfies T ⩾ log 2. Roughly speaking, this is because the
IMCF starts from a surface with area sysπ2(M), and when it splits, the area is at least
2 sysπ2(M) (each spherical component is nontrivial in π2).

Having these two observations, the main theorem follows by using the Geroch mono-
tonicity formula for t ∈ [0, log 2].
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The remaining part of this section is organized as follows. In Subsection 5.2.1 we prove
Theorem 5.2.1, and in Subsection 5.2.2 we prove Theorem 5.2.2. Finally, in Subsection
5.2.3 we make precise the decomposition mentioned above.

5.2.1 Proof of Theorem 5.2.1

Since Theorem 5.2.1 is vacuous when R ⩽ 0 somewhere, we may assume minR = λ >
0. Denote A0 = sysπ2(M). Taking a double cover if necessary, we assume that M has no
RP3 factors. Then by a theorem of Meeks and Yau [85], there exists an embedded sphere
Σ ⊂M with |Σ| = A0. Let us fix this choice of Σ.

By Theorem 5.0.2, M can topologically be written as

M = (S2 × S1)# · · ·#(S2 × S1)#(S3/Γ1)# · · ·#(S3/Γk). (5.2.5)

Based on this classification, there are three possible cases of the growth of π1(M):

(1) M is a spherical space form, for which π1(M) is finite.
(2) M is either S2 × S1 or RP3#RP3, for which π1(M) is virtually cyclic.
(3) All the remaining cases, where π1(M) has exponential growth.

Therefore, the topological condition in Theorem 5.2.1 implies case (3).

Let M̃ be the universal cover of M . By a result of Coulhon and Saloff-Coste [35], the

growth of M implies that M̃ supports a Euclidean isoperimetric inequality

|∂E| ⩾ c|E|2/3, ∀E ⋐ M̃.

Thus by Theorem A, proper IMCF exists for all initial data E0 ⋐ M̃ .
Before running the weak IMCF, we make the following setups. Let Σ̃ be an isometric

lift of Σ onto M̃ . Note that Σ̃ must be separating. Otherwise, there is a loop in M̃ that
intersects Σ̃ once, violating π1(M̃) = 0. Denote the two connected components of M̃ \ Σ̃

by M̃1 and M̃2.

Claim 1. Both M̃1, M̃2 are non-compact.

Proof. It follows from van Kampen’s theorem that π1(M̃1) = 0. If M̃1 is compact, then
by the relative Poincare duality and the long exact sequence of relative cohomology, we
have H2(M̃1,Z) = H1(M̃1, ∂M̃1,Z) = H1(M̃1,Z) = 0. Hence π2(M̃1) = 0 by Hurewicz’s

theorem. This contradicts with the fact that [Σ̃] ̸= 0 ∈ π2(M̃). For the same reason, M̃2

is noncompact.

Let E ′
0 ⊂ M̃1 be a small (one-sided) collar neighborhood of Σ̃ in M̃1, and u′ be the

proper solution of IVP(((M̃ ;E ′
0))). As the part of the solution in M̃1 is not utilized and

causes inconvenience, we excise it from the manifold in the following way. Consider a new
Riemannian manifold N = M̃2 ∪Σ̃ D (D denotes a 3-disk), where we arbitrarily extend

the metric on M̃2 into D. See Figure 5.4 for a depiction. Let u ∈ Liploc(N) be such that
u|M̃2

= u′ and u|D < 0. By checking Definition 2.1.8(1), one verifies that u is a proper
solution of IVP(((N ;E0))) with E0 := D. We shall be working with the solution u.

Claim 2. E0 is outward minimizing in N .

Proof. By Theorem 2.5.3, E ′
0 admits a precompact minimizing hull F ′

0 in M̃ . Then by

Theorem A.4.5, E ′
0 is a least area solution outside E0 in M̃ (see Definition A.4.3). Directly
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M̃1 M̃2

Σ̃

E ′
0

→
IMCF

←
IMCF

D = E0

M̃2

Σ̃

→
IMCF

Figure 5.4: Before and after the excision.

from this definition, it follows that F0 := (F ′
0 ∩ M̃2) ∪ E0 solves the least area outside E0

in N . The claim follows if we can show that |∂F0| ⩾ |∂E0|.
By the strong maximum principle, F0 either coincides with E0 or has a stable minimal

boundary in N \E0
∼= M̃2. The former case immediately implies the claim. Suppose that

the latter holds. Then we have [∂F0] = [Σ̃] viewed as elements in H2(M̃,Z), which is

nonzero by the Hurewicz theorem. Since M̃ has positive scalar curvature, all connected
components of ∂F0 are spherical. Hence at least one component of ∂F0 is nonzero in
π2(M̃). Finally, we obtain |∂F0| ⩾ sys π2(M̃) = sysπ2(M) = A0 = |∂E0|. This shows
that E0 is outward minimizing.

Claim 2 and exponential growth then imply that |∂Et| = etA0 for all t > 0. Define

T = inf
{
t > 0 : ∂Et has at least two spherical connected components

}
.

Claim 3. Each spherical component of ∂Et (t > 0) has area at least A0.

Proof. Let Σ′ be a spherical component of ∂Et, which we may also view as a surface in
M̃2 or in M̃ . By Corollary 5.1.2, [Σ′] is nonzero in H2(N \ E0,Z) ∼= H2(M̃2,Z). By the

fact that M̃1 is noncompact (Claim 1) and the long exact sequence of relative homology

0 = H3(M̃, M̃2,Z)→ H2(M̃2,Z)→ H2(M̃,Z),

[Σ′] is nonzero in H2(M̃,Z). Since Σ′ is spherical, it is a nonzero element in π2(M̃). Hence

|Σ′| ⩾ sys π2(M̃) = sysπ2(M) = A0.

By the definition of T , there is a sequence ti → 0 such that ∂ET+ti has more than
one spherical component. Therefore eT+tiA0 = |∂ET+ti | ⩾ 2A0. Letting i→∞ it follows
that T ⩾ log 2. Therefore, χ(∂Et) ⩽ 2 for all 0 ⩽ t < log 2. Finally, we utilize the
monotonicity formula (5.1.2) to obtain

0 ⩽
∫
∂Et

H2 ⩽ 16π
(
1− e−t/2

)
− 2

3
λA0

(
et − e−t/2

)
, ∀ t ⩽ log 2.

Taking t = log 2 we have

0 ⩽ 16π
(
1− 1√

2

)
− 2

3
λA0

(
2− 1√

2

)
,

which implies (5.2.3). This completes the proof of Theorem 5.2.1.
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5.2.2 Proof of Theorem 5.2.2

We deduce Theorem 5.2.2 from Theorem 5.2.1, using a doubling argument. We can
assume minM R = λ > 0. Let Σi (1 ⩽ i ⩽ k) be all the connected components of ∂M .
Denote hi = g|Σi the restricted metrics on Σi, and choose φi > 0 as the first eigenfunctions
of the stability operator for Σi. Therefore φi satisfy

∆hiφi ⩽
(
Khi −

1

2
λ
)
φi,

where K denotes the Gauss curvature. For T a sufficiently large constant to be chosen, let
Pi be diffeomorphic to the cylinders Σi × [−T, T ] and equipped with the warped product
metrics gi = hi + φ2

i dt
2 (−T ⩽ t ⩽ T ). The scalar curvature of Pi is given by

Rgi = 2
(
Khi −

∆hiφi
φi

)
⩾ λ,

see [69, Proposition 1.13]. Let M± be identical copies of M , whose metrics are still
denoted by g. Set

N = M− ∪∂M−

( k⊔
i=1

Pi

)
∪∂M+ M+,

equipped with the Lipschitz metric gN that agrees with g on M± and agrees with gi on
Pi. Topologically, N is a connected sum of k − 1 copies of S2 × S1.

Given any 0 < ε < 1/100, we claim the following:

Claim 1. There is a sufficiently large T for which the following holds. Suppose g′N is
any smooth metric on N , such that g′N = gi in each Pi, and ||g′N − gN ||C0(gN ) ⩽ ε3. Then
sys π2(N, g

′
N) ⩾ (1− ε)A0.

Claim 2. There exists a smooth metric g′N that satisfies the hypotheses of Claim 1, and
moreover has Rg′N

⩾ λ− ε.

The smoothness of g′N in the claims makes sense as a set of coordinate charts across
∂M± will be specified in the proof of Claim 2. With the two claims, it follows from
Theorem 5.2.1 that (λ− ε) · (1− ε)A0 ⩽ c, which by ε→ 0 proves Theorem 5.2.2.

Proof of Claim 1.
We start with proving two technical facts.

Claim 3. There exists a constant c0 independent of T such that: if t ∈ (−T + 2, T − 2),
1 ⩽ i ⩽ k, and S ⊂ N is a closed g′N -minimal surface that intersects with Σi×(t−1, t+1) ⊂
Pi, then

∣∣S ∩ (Σi × (t− 2, t+ 2)
)∣∣
gi
⩾ c0.

Proof. Let r0 > 0 be such that Bgi(x, r0) ⊂ Σi×(t−1.5, t+1.5) for all x ∈ Σi×(t−1, t+1).
By the classical monotonicity formula [85, Lemma 1], there exists a constant c > 0 such
that |S ∩B(x, r)|gi ⩾ crn for all x ∈ S ∩

(
Σi× (t− 1, t+ 1)

)
and r ∈ [0, r0]. The constants

c, r0 depend only on the geometry of Σi × (t− 2, t+ 2), thus not on T by the translation
symmetry. Now c0 = c1r

n
0 has the desired property.

Claim 4. Set T = 16A0/c0. Then an g′N -area minimizer in π2(N) either coincides with
Σi × {t} ⊂ Pi for some i, or does not intersect any Pi.

Proof. Let S be such a minimizer. Suppose S intersects with the interior of some Pi. By
the strong maximum principle, S either intersects with Σi × {t} for every −T < t < T ,
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or coincides with Σi × {t} for some t. If the former case happens, then applying Claim 1
to each Σi × [4j, 4j + 4], |j| ⩽ ⌊T/4⌋, we obtain

|S|g′N ⩾ |S ∩
(
Σi × (−T, T )

)
|gi ⩾ c0 · 2⌊

T

4
⌋ > 2A0.

This contradicts the minimality of S, since one of the Σi has area A0.

Back to the proof of claim 1, we choose T as in Claim 4. Let S be a g′N -area minimizer
in π2(N), which is a smoothly embedded sphere. Thus Claim 4 applies to S. If S is a
horizontal slice in some Pi, then |S|g′N = |Σi|hi ⩾ A0, implying Claim 1. Now we may
assume that S does not intersect all the Pi.

By the connectedness of S, we can assume without loss of generality that S ⊂ M−.
Since M− is topologically a sphere with disks removed, and S does not bound a 3-ball in
M−, it follows that S represents a nonzero element in H2(M

−,Z). Now let S ′ be a g-area
minimizer in the homology class of S in H2(M

−,Z). We note that S ′ must be a union of
components of ∂M−. Indeed, any interior component of S ′ is a smooth minimal surface,
hence must be homologically trivial by the theorem’s assumption. Thus we can decrease
the area by removing this component, contradicting the minimizing property of S ′. We
then have |S ′|g ⩾ A0. Combining what we obtained above, we have

A0 ⩽ |S ′|g ⩽ |S|g = |S|gN ⩽ (1 + ε2)|S|g′N = (1 + ε2) sysπ2(N, g
′
N),

which proves the claim. In the third inequality, we used the assumption ||g′N−gN ||C0(gN ) ⩽
ε3.

Proof of Claim 2.
The proof involves smoothing gN near ∂M± while preserving scalar curvature lower

bounds. By symmetry, it suffices to perform the smoothing near ∂M−. We invoke the
following gluing theorem in Brendle-Marques-Neves [23].

Theorem 5.2.3 ([23, Theorem 5]). Let M be a compact manifold with boundary ∂M ,
and g, g̃ be two smooth metrics such that g − g̃ = 0 at each point on ∂M . Moreover,
assume that Hg −Hg′ > 0 at each point on ∂M . Then given any number ε > 0 and any
neighborhood U of ∂M , there is a smooth metric ĝ on M with the following property:

(1) the scalar curvature of ĝ satisfies Rĝ(x) ⩾ min{Rg(x), Rg̃(x)}−ε for every x ∈M .
(2) ĝ agrees with g outside U .
(3) ĝ agrees with g̃ in some neighborhood of ∂M .
(4) ||ĝ − g||C0(g) ⩽ ε3.

Item (4) is not included in the original statement but follows directly from the proof.
To achieve this, we choose the tensor T to vanish outside a sufficiently small neighborhood
of ∂M in [23, p.189], then choose the parameter λ to be sufficiently large in [23, p.190].

To apply the theorem, we need to perturb g so that ∂M− is strictly mean convex.
Let δ be a small constant to be chosen. Choose any function u ∈ C∞(M) such that
||u||C2(g) ⩽ δ, u|∂M = 0 and ∂u

∂ν
> 0 on ∂M . Set g′ = e2ug. The last condition of u

ensures that ∂M− is mean convex with respect to g′. We have ||g′ − g||C0(g) ⩽ ε3 and
Rg′ ⩾ λ− ε/2 when δ is sufficiently small.

Next, we need to construct the metric g̃ which extends gi smoothly into the interior of
M−. We slightly enlarge Pi to the cylinders Qi = Σi × (−T − δ, T ], on which the metrics
are still of warped product form gi = hi + φ2

i dt
2. Let Φi : Σi × (−T − δ,−T ]→M− be a

regular smooth embedding, such that Φi maps Σi × {−T} identically to Σi ⊂ ∂M−, and
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Φ∗
i g

′ = gi on Σi×{−T}. Such a map can be constructed using normal exponential maps.
Let Vi ⊂ M− be the image of Φi. Thus, the metrics g̃i = (Φ−1

i )∗gi are defined in Vi and
coincides with g′ on Σi ⊂ ∂M−. Moreover, Σi is totally geodesic with respect to g̃i, hence
Hg′ −Hg̃i > 0 on Σi. Let g̃ be an arbitrary metric on M− that is equal to g̃i in a smaller
neighborhood Ui ⊂ Vi of Σi. Note that Rg̃ = Rg̃i = (Φ−1

i )∗Rgi ⩾ λ in Ui. Now we apply
Theorem 5.2.3 in the neighborhood

⋃
i Ui ⊃ ∂M− and with g′ in place of g. We obtain a

new metric ĝ on M−, such that ||ĝ − g′||C0(g′) ⩽ ε3 and Rĝ ⩾ λ− ε.
Finally, set g′N to be equal to ĝ on M−, and equal to gi on Pi. Thus g′N satisfies the

requirements of Claim 2 (on the side of M−) once we specify a smooth structure across
∂M− for which g′N is smooth. We express the space X = M− ∪∂M− (

⋃
Pi) as

X =
(

int(M−) ⊔
(⋃

Qi

))/
∼,

where ∼ is the equivalence relation x ∼ Φi(x), ∀x ∈ Σi × (−T − δ,−T ) ⊂ Qi. Since
the relation ∼ is given by diffeomorphism, a smooth structure on X is naturally induced.
It follows from Theorem 5.2.3 (3) that g′N is smooth under this smooth structure. This
completes the smoothing near ∂M−, and the smoothing near ∂M+ follows by symmetry.
This proves the claim.

5.2.3 A decomposition argument

We previously deduced Theorem 5.2.2 from 5.2.1. Now we make the reverse implica-
tion, by using the decomposition argument mentioned at the beginning of this section.

Assume that Theorem 5.2.2 holds. Let M satisfy the assumptions of Theorem 5.2.1.
Following the idea in the introduction, we shall show that (5.2.3) holds for any metric g
on M . We may assume without loss of generality that g has positive scalar curvature;
thus the topological classification (5.2.5) is available. The argument is divided into several
steps. We use #k(S2 × S1) to denote the connected sum of k copies of S2 × S1.

Step 1: we show that M is finitely covered by #k(S2 × S1) for some k. Suppose first
that M does not contain S2 × S1 prime factors, thus M ∼= (S3/Γ1)# · · ·#(S3/Γm) for
some finite groups Γi. By Kurosh’s subgroup theorem [80, Theorem VII.5.1], the kernel
of the quotient map π1(M) 7→ Γ1 × · · · × Γm is a free group with finite index. Hence
M is finitely covered by a closed 3-manifold M with free fundamental group. By the
classification (5.2.5) again, we see that M ∼= #k(S2 × S1) for some k. For the general
case, we may write M = #k(S2×S1)#N , where N is a connected sum of spherical space
forms. From the special case, N is covered by N = #m(S2×S1) for some m. This implies

that M is convered by #k deg(N→N)(S2 × S1)#N .
Step 2: we decomposeM into building pieces. Since the π2 – systole remains unchanged

when passing to covering spaces, we may assume M = #k(S2×S1). By slightly perturbing
the metric g, we assume that it is bumpy [111]. Let {Σ1, · · · ,Σm} be a maximal pairwise
disjoint collection of stable minimal surfaces in M , such that each Σi is nontrivial in
π2(M). Such collection exists and is finite by the bumpiness hypothesis. We denote by
{U1, · · · , Un} the set of connected components of M \

⋃
i⩽m Σi. The boundary of each Ui

consists of stable minimal spheres. Let Vi be the closed manifold obtained by filling the
boundaries of Ui with 3-balls. Notice that M can be recovered from

⊔
i⩽n Vi by performing

0-surgeries. Here, a 0-surgery means removing two disks and gluing the common sphere
boundaries. If the two disks are in different (resp. the same) connected components of
the manifold, then the 0-surgery is equivalent to a connected sum of the two components
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(resp. a connected sum of that component with S2 × S1). Therefore, from the 0-surgery
we obtain

M ∼= #m+1−n(S2 × S1)#V1# · · ·#Vn.

By the uniqueness of prime decomposition, each Ui is diffeomorphic to either a 3-sphere
with punctures or a #s(S2 × S1) with punctures (for some s ⩽ k).

We argue that the interior of each Ui does not contain stable minimal surfaces that
are nontrivial in H2(Ui,Z). Suppose otherwise that there is a counterexample Σ′ ⊂ U1.
In particular, Σ′ does not intersect any Σi. By the maximality of {Σi}, Σ′ must be trivial
in π2(M). Then Σ′ must bound a simply-connected region (otherwise, any lift of Σ′ to the

universal cover M̃ will be nontrivial in H2(M̃,Z), contradicting the homotopy triviality
of Σ′). By the uniqueness of prime decomposition, Σ′ bounds a 3-disk D ⊂ M . By the
defining property of Σ′, the disk D must contain one of the surfaces Σi. However, this
implies that Σi bounds a 3-disk, contradicting its homotopy triviality. This proves our
claim.

Note that, our claim implies that each Ui must be a punctured S3. Otherwise, one
finds an area minimizer in H2(Ui, ∂Ui,Z) to obtain a contradiction.

Step 3 : there exists a piece U1 with at least three boundary components. Otherwise,
all the Ui are diffeomorphic to S2× [0, 1], which implies M ∼= S2×S1 and contradicts the
assumption of Theorem 5.2.1. Suppose Σ1, · · · ,Σl (l ⩾ 3) are the boundaries of U1. By
the previous step, Theorem 5.2.2 is applicable to U1 and yields mini⩽l |Σi|g ·minU1 Rg ⩽ c0,
where c0 is the constant on the right hand side of (5.2.3). In particular, we have

sys π2(M, g) ·min
M

Rg ⩽ min
i⩽l
|Σi|g ·min

U1

Rg ⩽ c0.

This shows Theorem 5.2.1.

5.3 PSC 3-manifolds with bounded curvature

This section is based on joint work with O. Chodosh and Y. Lai [30].

Theorem 5.3.1 (= Theorem G, = [30, Theorem 1.1]).
Let (M3, g) be complete, connected, contractible, satisfy R ⩾ 0, and has bounded ge-

ometry:

|Rm | ⩽ Λ2, inj ⩾ Λ−1. (5.3.1)

Then M is diffeomorphic to R3.

This result fits into the general theme of classifying the topology of PSC 3-manifolds.
As in Theorem 5.0.2, the compact case is well understood. What remains widely open is
the noncompact case. In this direction, the following results are relevant:

� Schoen-Yau [98, Theorem 4]: if π1(M) contains the fundamental group of a closed
surface of genus ⩾ 1, then M does not admit complete PSC metrics.

� J. Wang [109]: the Whitehead manifold does not admit complete PSC metrics. In
general, if M is contractible and is a nested union of solid tori, and M admits
complete PSC metrics, then M ∼= R3 [30, Lemma 2.4].

The proof of these results involve the minimal surface technique which dates back to
Schoen-Yau [97]. Another notable work is:
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� J. Wang [108]: if M3 admits a complete metric with R ⩾ 1, then M is diffeomor-
phic to a (possibly infinite) connected sum of spherical space forms and S2×S1. In
particular, if M is further contractible, then M ∼= R3. This result was earlier ob-
tained by Bessiéres–Besson–Maillot [16] assuming an additional bounded geometry
condition (the tool in [16] is Ricci flow).

Despite these results, it remain open whether R3 is the only contractible 3-manifold
admitting complete PSC metrics (see [115, Question 27]). Our Theorem 5.3.1 resolves
this question assuming (5.3.1).

It turns out that the key to proving Theorem 5.3.1 is to find exhaustions of M by
spheres or tori. Indeed, we shall prove the following key intermediate result:

Theorem 5.3.2. Let M3 be complete, connected, contractible, and satisfies R > 0 and
(5.3.1). Then there is an exhaustion Ω1 ⋐ Ω2 ⋐ · · · ⋐ M , where either each ∂Ωi is a
2-sphere, or each ∂Ωi is a 2-torus.

The deduction of Theorem 5.3.1 from Theorem 5.3.2 is not related to IMCF. Thus, we
direct the reader to [30, Lemma 2.3, 2.4] for its proof. The rest of this section is devoted
to the proof of Theorem 5.3.2.

The following topological lemma will be useful in the proof.

Lemma 5.3.3. Suppose M is contractible and with dimension ⩾ 2. Then:
(i) M has only one end.
(ii) If E ⋐M is a connected C1 domain such thatM\E does not have compact connected

components, then ∂E is connected.

Proof. (i) If M has more than one end, then there is a (possibly non-connected) closed
hypersurface Σ ⊂ M so that M \ Σ has two connected components which are both
noncompact. This implies [Σ] ̸= 0 ∈ Hn−1(M ;Z), contradiction.

(ii) Since M is one-ended, M \E must be connected. If ∂E is disconnected, then there
is a component of ∂E that has nonzero algebraic intersection with a closed loop γ. But
this contradicts the contractibility of M .

Now we start proving Theorem 5.3.2. In the work of Wang [108] mentioned above,
the main tool is the µ-bubble introduced by Gromov [47]. Under the assumption R ⩾ 1
in [108], µ-bubbles can be used to effectively find exhaustions with spherical boundaries.
However, µ-bubbles are not applicable to the case of Theorem 5.3.2 since the scalar
curvature is not uniformly positive. Here, the exhaustion in Theorem 5.3.2 is found by
running an innermost IMCF u from a small geodesic ball.

Proof of Theorem 5.3.2.
Without loss of generality, we may further assume that

inj ⩾ Λ−1
0 , |∇k Rm | ⩽ Λk, ∀ k ⩾ 0, (5.3.2)

for a sequence of constants {Λk}. This follows from Shi’s classical Ricci flow result [99,
Theorem 1.2], and the preservation of PSC under complete Ricci flow with bounded
curvature [33, Section 12.5].

So let us assume that M is complete, connected, contractible, satisfying R > 0 and
(5.3.2). Fix p ∈ M . Let E0 = B(p, r0) and u be the innermost solution of IVP(((M ;E0))).
By Lemma 5.3.3(i) above, M is one-ended. Then by Theorem 4.3.2, we may choose r0
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sufficiently small so that u is either proper, sweeping, or instantly escaping (see Definition
4.3.1). We prove the main theorem in three cases.

Case 1: Suppose u is proper. Since ∂E0 is connected and M is contractible, by Lemma
5.1.1 and 5.3.3(ii) we see that all the ∂Et (t > 0) are connected. By the monotonicity
formula (5.1.1), we have∫ t

0

4πχ(∂Es) ds ⩾
∫
∂Et

H2 −
∫
∂E0

H2 ⩾ −
∫
∂E0

H2 dµ0, ∀ t > 0.

Thus there exists a sequence ti →∞ such that each ∂Eti is either an S2 or T 2, for all i.
Since u ∈ Liploc(M), the sets Eti must form an exhaustion of M . The result follows by
taking a subsequence.

Case 2: Suppose u is sweeping. Then recall from Definition 4.3.1 that there exists
T ∈ (0,∞) such that Et ⋐ M for all t < T , and ET =

⋃
t∈[0,T )Et = M . By Lemma

5.1.1 and 5.3.3(ii), each ∂Et is connected. Then by Lemma 4.3.3(ii) and 4.3.4(ii), for
all t ∈ [0, T ) we have that ∂Et is uniformly C1,α-bounded and has uniformly bounded
diameters. Thus, we can select a sequence ti ↗ T such that

lim
i→∞

d
(
∂Eti−1

, ∂Eti
)

=∞. (5.3.3)

Next, recall that each Eti is outward area-minimizing. Hence for each i and set F with
Eti−1

⊂ F ⋐M , we have

|∂F | ⩾
∣∣∂Eti−1

(u)
∣∣ = eti−1−ti

∣∣∂Eti(u)
∣∣. (5.3.4)

Now fix basepoints pi ∈ ∂Eti , so pi → ∞ as i → ∞. By (5.3.2), we may pass to a
subsequence and assume that

� (M, g, pi) converge smoothly to a manifold (M∞, g∞, p∞) with R ⩾ 0,
� Eti converge in L1

loc to a set E∞ ⊂M∞,
� ∂Eti converge in the C1,β (β < α) sense to a connected closed surface Σ∞ ⊂M∞.

So Σ∞ = ∂E∞. Combining (5.3.4) and (5.3.3) and the set-replacing argument, it follows
that E∞ is perimeter-minimizing. Thus Σ∞ must be topologically S2 or T 2. Hence there
is a subsequence of {∂Eti} which either consists of S2 or consists of T 2.

Case 3: Suppose u is escaping. Let T be the escape time of u as in Definition 4.3.1.
We wish to argue as in Case 2, but we encounter the trouble that there is no level set
outside ET . To resolve this issue, we need to slightly perturb the metric and create some
level sets outside ET . We have the following statement:

Lemma 5.3.4. Let M3 be complete, connected, contractible, and satisfy (5.3.2). Suppose
E0 ⋐M , and u is an instantly escaping maximal solution of IVP(((M ;E0))). Let T ∈ (0,∞)
be the escape time of u. Then there exists a constant C > 0 such that: for any domain K
with ET (u) ⋐ K ⋐M and all δ > 0, there exists a set E such that
(i) K ⋐ E ⋐ M , and ∂E is a connected C1,α surface, with diam(∂E) ⩽ C, and the

C1,α norm of ∂E is controlled by C;
(ii) For any F with ET (u) ⋐ F ⋐M , we have |∂E|g ⩽ (1 + δ)|∂F |g.

We postpone the proof to the next subsection, and here let us assume it. Taking a
sequence δi → 0 and an exhaustion {Ki} of M , the lemma provides a sequence of sets {Fi}
from the lemma. Taking a further subsequence, we find that {Fi} form an exhaustion,
and has uniformly C1,α boundaries with uniformly bounded diameters. Thus we are able
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to perform the same limiting argument as in Case 2. Condition (ii) in Lemma 5.3.4 and
the set-replacing argument implies that the limit set E∞ is perimeter-minimizing. The
theorem follows by the same reason as in Case 2.

5.3.1 Modifying instantly escaping IMCF

The aim of this subsection is to prove Lemma 5.3.4. Consider an instantly escaping
maximal solution u of IVP(((M ;E0))), for some E0 ⋐M . Thus there exists T ∈ (0,∞) such
that

ET (u) ⋐M, u ≡ T in M \ ET (u).

To prove Lemma 5.3.4, we perturb the metric far outside K to slightly enlarge it at
infinity. In view of Theorem 4.3.2, the escape time of an innermost IMCF is related to
the circumference at infinity. Thus our perturbation will delay the escape time, and as a
result, new sub-level sets will appear in the edited region. These new sub-level sets turn
out to be the set E in Lemma 5.3.4. See Figure 5.5 for a description of this procedure.

u ≡ T
∂E0

∂ET
∂E0

∂ET ∂ET+t(ũ)

g̃=g︷ ︸︸ ︷ g̃=(1+ε)g︷ ︸︸ ︷

Figure 5.5: The perturbation argument.

The following lemma is the technical description of the above procedure. Since there
are multiple Riemannian metrics and maximal solutions appearing in this subsection, we
will keep the full notation Et(u) and |∂E|g for clarity.

Lemma 5.3.5. Suppose (M, g) is one-ended and satisfies (5.3.2), and u is an instantly
escaping maximal solution of IVP(((M, g;E0))). Let T ∈ (0,∞) be the escape time of u.

Then for any K ⋐M and ε ∈ (0, 1), there is a smooth metric g̃ with ∥g̃− g∥C10(g) ⩽ ε
and with the following property: if ũ is the maximal solution of IVP(((M, g̃;E0))), then:

(i) ET (ũ) = ET (u),
(ii) there exists t ∈ (T, T + ε) such that Et(ũ) ⋐M and ∂Et(ũ) ∩ (M \K) ̸= ∅.

Proof of Lemma 5.3.4 assuming Lemma 5.3.5.
Note that M is one-ended. Thus for any K ′ ⋐M and ε < 10−n, we may apply Lemma

5.3.5 to obtain a new metric g̃. Let ũ be the maximal solution of IVP(((M, g̃;E0))).
Combining Lemma 5.1.1 and 5.3.3(ii), ∂Et(ũ) is connected. Combined with Lemma

4.3.4(ii) and ∥g̃ − g∥C10 ⩽ ε, we have

diamg

(
∂Et(ũ)

)
⩽ C

(
T,Λ, |∂E0|g, diamg(∂E0)

)
.

In particular, it is independent of K ′. Choosing K ′ large enough, it follows that we can
achieve Et(ũ) ⋑ K (where K is the domain given in Lemma 5.3.4). Moreover, by Lemma
4.3.3(ii) and ∥g̃ − g∥C10 ⩽ ε, ∂Et(ũ) has controlled C1,α norm with respect to g̃, hence
with respect to g as well. This proves Lemma 5.3.4(i) by setting E = Et(ũ).

Since ET (ũ) is outward minimizing in (M, g̃), for any F ⋑ ET (ũ) we have

(1 + ε)n−1|∂F |g ≥ |∂F |g̃ ⩾ |∂ET (ũ)|g̃ = e−(t−T )|∂E|g̃ ⩾ e−ε|∂E|g.

By taking ε sufficiently small, this implies item (ii) since ET (ũ) = ET (u).
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Proof of Lemma 5.3.5.
Let K, ε be as stated in the lemma. Since the statement is stronger when K is larger,

we have the flexibility of arbitrarily enlarging K. Recall by Theorem 4.3.2 that the escape
time T satisfies

|∂ET (u)|g = inf
{

lim inf
i→∞

|∂Fi|g : {Fi} is a C1 exhaustion of M
}
.

By choosing an almost optimal exhaustion, and letting K be a sufficiently large element
in it, we may assume that K satisfies

K ⋑ ET (u), |∂K|g < (1 + ε)|∂ET (u)|g. (5.3.5)

Fix a point p ∈ E0. Assume K ⋐ Bg(p,R1) for some R1 > 0. We use C > 0 to denote a
generic constant that only depends on finitely many Λk (where Λk is as in (5.3.2)).

Claim 1. There exists R2 > R1 and a smooth Riemannian metric g̃, such that
(i) g̃ ⩾ g and ∥g̃ − g∥C10(g) ⩽ Cε;

(ii) g̃ = g in Bg(p, 2R1), and g̃ = (1 + ε)g in M \Bg(p,R2/2).

We postpone its proof to the end. In the following, we fix the choice of R2 > R1 and
g̃ as in Claim 1. Then we see that g̃ satisfies

ĩnj ⩾ (Λ′)−1, |∇̃kR̃m| ⩽ (Λ′)k+2 (5.3.6)

for all k ⩽ 8 for some other constant Λ′. Thus Lemma 4.3.3 and 4.3.4 hold in (M, g̃) with
a weaker constant. It is helpful to recall the following chain of inclusions:

ET (u) ⋐ K ⋐ Bg(p,R1) ⋐
{
g̃ = g

}
⋐
{
g̃ ̸= (1 + ε)g

}
⋐ Bg(p,R2).

Claim 2. u is a solution of IVP(((M, g̃;E0))).

Proof. It suffices to show that u solves IMCF(((M \E0, g̃))). Suppose t ∈ R, F is a com-
petitor set with F∆Et ⋐ K ′ ⋐ M \ E0. Note that g̃ ⩾ g, and ∂Et(u) ⊂ {g̃ = g}, and∫
A
|∇g̃u| dVg̃ =

∫
A
|∇gu| dVg for all set A (since u ≡ T wherever g̃ ̸= g). As a result,

JK
′

u,g̃(F ) = P (F ;K ′)g̃ −
∫
F∩K′

|∇g̃u| dVg̃ ⩾ P (F ;K ′)g −
∫
F∩K′

|∇gu| dVg

= JK
′

u,g(F ) ⩾ JK
′

u,g(Et) = JK
′

u,g̃(Et),

proving the claim.

Let ũ be the maximal solution of IVP(((M, g̃;E0))). Hence ũ ⩾ u. This implies ET (ũ) ⊂
ET (u) ⋐M , thus by the maximum principle (Theorem 2.1.12(iii)), ET (ũ) = ET (u).

Claim 3. For all t < T + (n− 1) log(1 + ε), we have Et(ũ) ⋐M .

Proof. Fix such a t. We find a smooth precompact exhaustion {Ωl} with

Bg(p,R2) ⋐ Ω1 ⋐ Ω2 ⋐ · · · ⋐M,
⋃

Ωl = M.

Apply Lemma 4.1.2 to this exhaustion: we obtain a sequence of functions {ul} where
each ul solves IVP(((Ωl, g̃;E0)))+OBS(((∂Ωl))). Furthermore, {ũl} is a descending sequence, and
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ũl → ũ in C0
loc(M \ E0). In particular, note that ET (ũl) ⊂ ET (ũ) ⋐ Ωl. By the interior

maximum principle, we have ET (ũl) = ET (ũ) = ET (u) for each l.
By Lemma 4.3.4(i) and (5.3.6) and the one-endedness of M , to prove the claim it

suffices to prove that Et(ũ) ̸= M . Suppose this is not the case. As Et(ũ) =
⋃
l⩾1Et(ũl),

we would have Et(ũl) ⋑ Bg(p,R2) for some sufficiently large l. This implies

∂Et(ũl) ⊂M \Bg(p,R2) ⊂
{
g̃ = (1 + ε)g

}
.

So by our choice of t and the sub-exponential growth of area (Corollary 3.3.14), we have

|∂Et(ũl)|g =
|∂Et(ũl)|g̃
(1 + ε)n−1

⩽ et−T
|∂ET (ũl)|g̃
(1 + ε)n−1

= et−T
|∂ET (u)|g
(1 + ε)n−1

< |∂ET (u)|g.

So we find a surface outside ET (u) that has a strictly smaller g-perimeter, but this con-
tradicts the outward minimizing of ET (u).

Claim 4. If T + log(1 + ε) < t < T + (n− 1) log(1 + ε), then Et(ũ) ∩ (M \K) ̸= ∅.

Proof. Suppose the claim is false at such a time t. So Et(ũ) ⊂ K ⋐M . By the exponential
growth of area (see Remark 2.1.4(v); we remind that obstacles are not involved in this
claim) and noting that g̃ = g in K, we have

|∂Et(ũ)|g̃ = et−T |∂ET (ũ)|g̃ > (1 + ε)|∂ET (u)|g.

Then recalling (5.3.5) and g̃ = g on K we have

|∂K|g̃ = |∂K|g < (1 + ε)|∂ET (u)|g ⩽ |∂Et(ũ)|g̃,

which contradicts the outward minimization of ∂Et(ũ).

Combining Claim 3, 4, the lemma is proved.

Proof of Claim 1.
Fix the bump function η ∈ C∞(R+) defined by

η(ρ) =

{
exp

(
1/(4Λ2ρ2 − 1)

)
, ρ < 1/2Λ,

0, ρ > 1/2Λ.

Then consider

d̃(x) =

∫
M

η
(
d(x, y)

)
d(y, p) dy.

By our higher bounded geometry condition (5.3.2), we have the uniform bound∣∣∇k
xd(x, y)2

∣∣ ⩽ C, ∀ k ⩽ 20, ∀x, y with d(x, y) ⩽ 1/2Λ,

where the constant C depends on finitely many Λk and is independent of x, y. It follows
that the C20 norm of d̃ is uniformly bounded on M . Furthermore, we have the pointwise
estimates

d̃(x) ⩾
[
d(x, p)− 1/2Λ

] ∫
M

η
(
d(x, y)

)
dy ⩾ C−1

[
d(x, p)− 1/2Λ

]
, (5.3.7)
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and

d̃(x) ⩽
[
d(x, p) + 1/2Λ

] ∫
M

η
(
d(x, y)

)
dy ⩽ C

[
d(x, p) + 1/2Λ

]
, ∀x ∈M. (5.3.8)

Next, fix a cutoff function σ ∈ C∞(R) with

0 ⩽ σ ⩽ 1, σ|(−∞,0] ≡ 0, σ|[1,∞) ≡ 1.

For sufficiently large ρ, consider the metric

g̃ =
(
1 + εσ(d̃− ρ)

)
g.

Thus ∥g̃−g∥C20(g) ⩽ Cε where C is independent of ε, ρ. By (5.3.8), for some ρ≫ 1 we have
g̃ = g in Bg(p, 2R1). Fix this choice of ρ. Then by (5.3.7), we have {g̃ ̸= (1 + ε)g} ⋐ M ,
and item (ii) follows by choosing large enough R2.



Appendix A

Sets with locally finite perimeter

This appendix contains some background materials in geometric measure theory. In
particular, we review the notion of sets with locally finite perimeter, and its classical
properties. Some useful auxiliary results are also stated in this appendix. The main
reference is Maggi’s textbook [77].

We will fix a background manifold M without boundary, and an underlying smooth
Riemannian metric g on M .

A.1 Basic notions

Let E be a measurable set in M . We define its measure-theoretic interior to be

E(1) :=
{
x ∈M : lim

r→0

|E ∩B(x, r)|
ωnrn

= 1
}
, (A.1.1)

and its measure-theoretic exterior to be

E(0) :=
{
x ∈M : lim

r→0

|E ∩B(x, r)|
ωnrn

= 0
}
, (A.1.2)

By Lebesgue’s differentiation theorem, we have
∣∣E∆E(1)

∣∣ = 0 and
∣∣(M \ E)∆E(0)

∣∣ = 0.
For a domain Ω ⊂M , we define the perimeter of E inside Ω to be

P (E; Ω) := sup
{∫

E

divX : X is a C1 vector field with

sptX ⋐ Ω, |X| ⩽ 1
}
.

(A.1.3)

When Ω = M , we denote the total curvature of E by

P (E) := P (E;M)

We call E a set with locally finite perimeter in a domain Ω, if P (E;K) < ∞ for all
K ⋐ Ω. Also, we call E a set with finite perimeter in Ω, if P (E; Ω) <∞.

We say that a sequence of sets Ei converges to a set E in L1
loc(Ω), if χEi → χE in

L1
loc(Ω). A fundamental property of the perimeter is its lower semi-continuity:

Theorem A.1.1 ([77, Proposition 12.15]). Suppose Ei have locally finite perimeter in Ω,
and Ei → E in L1

loc(Ω). Then for all sub-domains Ω′ ⊂ Ω we have

P (E; Ω′) ⩽ lim inf
i→∞

P (Ei; Ω′). (A.1.4)

If in addition supi P (Ei;K) <∞ for all K ⋐ Ω, then E has locally finite perimeter in Ω.

147
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The following compactness theorem is also useful:

Theorem A.1.2 ([77, Corollary 12.27]). Suppose Ei have locally finite perimeter in Ω,
such that

sup
i
P (Ei;K) <∞ ∀K ⋐ Ω.

Then up to a subsequence, we have Ei → E in L1
loc(Ω) for some set E with locally finite

perimeter in Ω.

The following result shows that every set with finite perimeter is smoothable.

Theorem A.1.3 ([77, Theorem 13.8]). Suppose E ⋐ Ω has finite perimeter. Then there
is a sequence of sets Ei ⋐ Ω with smooth boundaries, such that
(i) Ei ⋐ K ∀ i, for a common domain K ⋐ Ω,
(ii) Ei → E in L1, and ∂Ei → ∂E in Hausdorff topology,
(iii) |µEi |⇀ |µE|. In particular, P (Ei)→ P (E).

Suppose E has locally finite perimeter in Ω. By the Riesz representation theorem,
there is a vector valued Radon measure in Ω, denoted by µE, such that∫

E

divX =

∫
X · dµE (A.1.5)

for all C1 vector field X with sptX ⋐ Ω. The measure µE is called the Gauss-Green
measure of E. By the polar decomposition of vector-valued measures, we can write

µE = νE · |µE|,

where |µE| is a (scalar-valued) Radon measure, and νE is a |µE|-measurable vector field
with |µE|-a.e. unit length. We call |µE| the perimeter measure of E, and νE the (measure-
theoretic) outer unit normal of E. By the general decomposition theorem [77, Theorem
4.7], we have

P (E;K) = |µE|(K), ∀domain K ⋐ Ω.

This justifies the name of |µE| as “perimeter measure”.

Let µi, µ be scalar or vector valued measures in Ω. We say that µi ⇀ µ weakly, if∫
ϕ dµi →

∫
φdµ

for all C1 function or vector field ϕ with sptϕ ⋐ Ω.

By Riesz representation, the convergence of sets Ei
L1
loc−−→ E implies the weak conver-

gence of the Gauss-Green measures µEi ⇀ µE. We warn the reader that the convergence
|µEi | ⇀̸ |µE| is in general not true. The following result is often helpful:

Lemma A.1.4 ([77, Proposition 4.26]).
Suppose µi, µ are (scalar valued) measures in Ω, with µi ⇀ µ. Then we have:

(i) µ(U) ⩽ lim infi→∞ µi(U) for all open sets U ,
(ii) µ(S) ⩾ lim supi→∞ µi(S) for all compact sets S,
(iii) µ(A) = limi→∞ µi(A) for all precompact sets A with µ(∂A) = 0.
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For a set E with locally finite perimteter, we define the reduced boundary of E to be

∂∗E =
{
x ∈ sptµE : lim

r→0

µE(B(x, r))

|µE|(B(x, r))
exists and belongs to Sn−1

}
. (A.1.6)

A classical result of De Giorgi states that:

Theorem A.1.5 ([77, Theorem 15.9]). Suppose E has locally finite perimeter in Ω. Then

|µE| = Hn−1⌞∂∗E as measures in Ω, (A.1.7)

and

νE(x) = lim
r→0

µE(B(x, r))

|µE|(B(x, r))
∀x ∈ ∂∗E. (A.1.8)

It is important to note that: if two sets E,F differ by a set with zero measure, then
we have µE = µF and ∂∗E = ∂∗F . This is readily checked from the definition. In fact,
all the objects defined above are unaffected by modifications with zero measure.

Next, we review several decomposition formulas for the perimeter. In what follows,
E,F are sets with locally finite perimeter in Ω, and K ⋐ Ω is a domain.

First, we note the following cup-cap inequality [77, Lemma 12.22]:

P (E ∩ F ;K) + P (E ∪ F ;K) ⩽ P (E;K) + P (F ;K). (A.1.9)

Next, we note the following set operation formulas [77, Theorem 16.3]. Here, we recall
(A.1.1) (A.1.2) for the notions E(1), E(0), and the last terms {νE = ±νF} are shorthands
for the sets

{
x ∈ ∂∗E ∩ ∂∗F : νE(x) = ±νF (x)

}
.

P (E ∩ F ;K) = Hn−1
(
∂∗E ∩ F (1) ∩K

)
+Hn−1

(
∂∗F ∩ E(1) ∩K

)
+Hn−1

(
{νE = νF} ∩K

)
,

P (E ∪ F ;K) = Hn−1
(
∂∗E ∩ F (0) ∩K

)
+Hn−1

(
∂∗F ∩ E(0) ∩K

)
+Hn−1

(
{νE = νF} ∩K

)
,

P (E \ F ;K) = Hn−1
(
∂∗E ∩ F (0) ∩K

)
+Hn−1

(
∂∗F ∩ E(1) ∩K

)
+Hn−1

(
{νE = −νF} ∩K

)
,

(A.1.10)

(A.1.11)

(A.1.12)

When two sets E,F interacts, we can decompose the perimeter of E according to how
it overlaps with F [77, Theorem 16.2]:

P (E;K) ⩾ Hn−1
(
∂∗E ∩ F (1) ∩K

)
+Hn−1

(
∂∗E ∩ F (0) ∩K

)
+Hn−1

(
{νE = νF} ∩K

)
+Hn−1

(
{νE = −νF} ∩K

)
.

(A.1.13)

A direct consequence of these formulas is the following:

P (E;K)− P (E ∩ F ;K) ⩾ Hn−1
(
∂∗E ∩ F (0) ∩K

)
−Hn−1

(
∂∗F ∩ E(1) ∩K

)
.

P (E;K)− P (E \ F ;K) ⩾ Hn−1
(
∂∗E ∩ F (1) ∩K

)
−Hn−1

(
∂∗F ∩ E(1) ∩K

)
.

(A.1.14)

(A.1.15)

When Hn−1(∂∗E ∩ ∂∗F ) = 0, the set {νE = ±νF} makes no contribution. This makes
the above equations much simpler.
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The topological and reduced boundary are in general different. Consider the set E =
{y < 0, x ̸= 0} ⊂ R2. Then ∂E = {y = 0} ∪ {x = 0, y < 0} while ∂∗E = spt |µE| = {y =
0}. This general subtlety can be effectively removed by considering the measure-theoretic
interior of a set (see also [77, Proposition 12.19]):

Lemma A.1.6. If E has locally finite perimeter in Ω, then

∂E(1) ∩ Ω = spt |µE| ∩ Ω = ∂∗E ∩ Ω.

In particular, if E has locally finite perimeter in M , then ∂E(1) = spt |µE| = ∂∗E.

Proof. Replacing M by Ω, we may assume Ω = M . The fact spt |µE| = ∂∗E follows
from De Giorgi’s formula. If x ∈ M \ ∂E(1), then E occupies either full measure or zero
measure in some neighborhood of x. Thus we have spt |µE| ⊂ ∂E(1). It remains to show
that ∂E(1) ⊂ spt |µE|. Suppose x ∈ ∂E(1). Then for every r > 0, the ball B(x, r) contains
points in both E(1) and Ω \ E(1), hence

|E ∩B(x, r)| > 0, |B(x, r) \ E| > 0.

When r is sufficiently small (depending on the local geometry near x), we have the Neu-
mann isoperimetric inequality

P
(
E;B(x, r)

)
⩾ c(n) min

{
|E ∩B(x, r)|, |B(x, r) \ E|

}
> 0.

This implies x ∈ spt |µE|.

A.2 Almost perimeter minimizers

Let E be a set with locally finite perimeter in a domain Ω. We say that E is almost
perimeter minimizing in Ω, if for any K ⋐ Ω, there is a constant ΛE(K) > 0 such that

P (E;K) ⩽ P (F ;K) + ΛE(K) · |E∆F | (A.2.1)

for all competitors F with E∆F ⋐ K.
This is close to the notion of “(Λ, r0)-perimeter minimizer” introduced in [77, Chapter

21]. In particular, if E is almost perimeter minimizing as defined here, with E = E(1),
then for all K ⋐ Ω, E is (ΛE(K), r0)-perimeter minimizing in K, for all r0 > 0. Thus,
the results in [77] are applicable to almost perimeter-minimizing sets. (We remind that
in [77, p.278], the author assumed that spt |µE| = ∂E. In view of Lemma A.1.6 above,
our setup is consistent with [77] if we assume E = E(1) in the theorems below.)

We have the following well-known regularity theorem:

Theorem A.2.1 (regularity, [77, Theorem 26.5, 28.1]).
If E is an almost perimeter-minimizer in Ω, with E = E(1), then ∂∗E is a C1,α

(α < 1/2) hypersurface, and ∂E \ ∂∗E has Hausdorff dimension at most n− 8.

The following convergence result and density bound follows by combining (the Rie-
mannian analogue of) Theorem 21.11, 21.14 and 26.6 in [77]. See also [104, 105].

Theorem A.2.2 (convergence). Let (M, g) be a Riemannian manifold, and Ω ⊂M is a
domain, and g be a smooth metric in Ω. Assume the following data:
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(1) Ωi is a sequence of domains that converge to Ω locally,
(2) gi are smooth metrics that converge to g locally smoothly,
(3) Ei are almost perimeter minimizers in (Ωi, gi),
(4) the constants ΛEi(K) in (A.2.1) are uniformly bounded for all large i, for all K ⋐ Ω,
(5) E has locally finite perimeter in Ω, and Ei → E in L1

loc(Ω),
(6) xi ∈ spt |µEi |, with xi → x ∈ Ω.

Then we have:
(i) E is almost perimeter minimizing in Ω, with ΛE(K) ⩽ lim infi→∞ ΛEi(K) for all

K ⋐ Ω. Furthermore, |µEi |⇀ |µE| weakly as measures in Ω,
(ii) x ∈ spt |µE| (in particular, spt |µEi | → spt |µE| in local Hausdorff sense in Ω),
(iii) there is a constant c = c(n) < 1 so that

lim sup
r→0

|E ∩B(x, r)|
ωnrn

⩽ c.

In particular, x /∈ E(1).
(iv) If x ∈ ∂∗E, then xi ∈ ∂∗Ei for sufficiently large i, and we have νEi(xi)→ νE(x).

When n ⩽ 7, the regularity statement can be made uniform. More precisely, it depends
only on the constants ΛE(K) and the underlying metric. In what follows, we fix a domain
Ω (thus all the norms depend implicitly on Ω).

Let g be a smooth Riemannian metric in Ω, and x ∈ Ω. Suppose k ⩾ 0. The Ck norm
of g near x, denoted by ∥g∥Ck(x), is defined to be the smallest constant L so that:

(1) Bg(x, 3L
−1) ⋐ Ω, and the injectivity radius at x is at least 2L−1,

(2) in any geodesic normal coordinate in Bg(x, L
−1), the metric tensor gij satisfies

∥gij − δij∥C0 +
k∑

|γ|=1

L−|γ|∥∂γgij∥C0 ⩽ 10−n, ∀ 1 ⩽ i, j ⩽ n. (A.2.2)

This Ck norm is scale invariant: one may check that ∥λ2g∥Ck(x) = λ−1∥g∥Ck(x) for all
λ > 0. Denoting by geuc the Euclidean metric in Rn, we have ∥geuc∥Ck(0) = 0 for all k.

The Ck norm of a metric can be bounded in terms of the injectivity radius, the
Riemannian tensor and its derivatives. See [38]: if k ⩾ 0 and g satisfies

inj(x) ⩾ Λ−1 and |∇l Rm | ⩽ Λl+2 in B(x,Λ−1), ∀ l ⩽ k, (A.2.3)

then ∥g∥Ck(x) ⩽ C(n, k)Λ. A particular case is bounded geometry, namely, the condition
(A.2.3) with k = 0. In this case, we obtain ∥g∥C0(x) ⩽ C(n)Λ.

Let E be a subset of M , and x ∈ ∂E. Suppose k ⩾ 1, α ∈ (0, 1). The Ck,α norm of E
at x is defined to be the smallest constant L so that:

(1) Bg(x, 3L
−1) ⋐ Ω, and the injectivity radius at x is at least 2L−1,

(2) in some geodesic normal coordinate (x1, · · · , xn) centered at x, and in the region{
|xn| < L−1, x21 + · · · + x2n−1 < L−2

}
, the set E is represented as the sub-graph of a C1

function f such that

∥f∥C0 +
k∑

|γ|=1

L−γ∥∂γf∥C0 + L−k−α
∑
|γ|=k

∥∂γf∥C0,α ⩽ 10−nL−1. (A.2.4)

Since this norm also depends on the underlying metric g, we denote it by ∥E∥Ck,α(g,x).
Note its scaling: ∥E∥Ck,α(λ2g,x) = λ−1∥E∥Ck,α(g,x).
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Theorem A.2.3. Suppose n ⩽ 7, α ∈ (0, 1/2), and E is an almost perimeter minimizer
in Ω, with E = E(1). Suppose x ∈ ∂E. Then for any R ⩽ d(x, ∂Ω)/2, we have

∥E∥C1,α(g,x) ⩽ R−1C
(
n, α,R ∥g∥C4(x), RΛE

(
B(x,R)

))
,

where ΛE(·) is the constant appearing in (A.2.1).

Proof. Since the statement is scale-invariant, we can assume without loss of generality
that R = 1. By Theorem A.2.1, ∂E is a C1,α surface near x, so ∥E∥C1,α(g,x) < ∞.
Suppose that the theorem does not hold. Then there is a sequence of domains (Ωi, gi),
almost perimeter-minimizing sets Ei in Ωi, points xi ∈ ∂Ei ∩ Ωi, such that:

di(xi, ∂Ωi) > 2, ∥gi∥C4(xi) ⩽ L, ΛEi

(
Bi(xi, 1)

)
⩽ L,

but
Qi := ∥Ei∥C1,α(gi,xi) →∞.

Consider the rescaled metrics g̃i = Qigi. We have d̃i(xi, ∂Ωi)→∞ and

∥g̃i∥C4(x) ⩽ LQ
−1/2
i , ΛEi

(
B̃i(xi, Q

1/2
i )
)
⩽ LQ

−1/2
i , ∥∂Ei∥C1,α(g̃i,xi) = Q

1/2
i .

Let us argue that for any constant µ > 0, the small excess condition P
(
Ei; B̃i(xi, 1)

)
⩽

(1+µ)ωn−1 holds for all sufficiently large i. Then the classical ε-regularity theorem [104, 3]
(see also [77, Theorem 26.3]) would imply that ∥Ei∥C1,α(g̃i,xi) ⩽ C for all large i, leading
to a contradiction.

Now suppose that our claim is false. Thus we may pick a subsequence so that
P
(
Ei; B̃i(xi, 1)

)
> (1 + µ)ωn−1 for all i. Since the C4 norm of g̃i converges to zero,

we may choose a large geodesic normal coordinate chart around each xi and take a limit

g̃i
C3

loc−−→ geuc, Ei
L1
loc−−→ E in Rn.

Theorem A.2.2 then implies that E is perimeter minimizing in Rn, with 0 ∈ spt |µE|.
By the Bernstein theorem [77, Theorem 28.17], E must be a half-space. Finally, by the
convergence of perimeter measure and the fact that Hn−1

(
E∩∂BRn(0, 1)

)
= 0, we obtain

ωn−1 = P
(
E;BRn(0, 1)

)
= lim

i→∞
P
(
Ei; B̃i(xi, 1)

)
⩾ (1 + µ)ωn−1,

contradiction.

The following result, which holds in all dimensions, provides effective density estimate
for almost perimeter minimizers. Recall from above that a uniform upper bound on
∥g∥C0(x) can be obtained if the manifold has bounded geometry.

Theorem A.2.4. Suppose E is an almost perimeter minimizer in Ω with E = E(1), and
x ∈ ∂E. For any radius R < d(x, ∂Ω)/2, there is a constant

c = c
(
n,R ∥g∥C0(x), RΛE

(
B(x,R)

))
> 0,

such that that
P
(
E;B(x, r)

)
⩾ c(n)rn−1 ∀ r ∈ (0, cR].
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Proof. By scale invariance, we may assume R = 1. Denote Λ1 = ∥g∥C0(x), Λ2 =
ΛE

(
B(x, 1)

)
. Set c = min{1/4Λ1, 1/4Λ2}. By the definition of C0 norm, we have(

1− 10−n)geuc ⩽ g ⩽
(
1 + 10−n)geuc

in any geodesic normal coordinates in B(x, 2c). This implies the isoperimetric inequality

P (E) ⩾
2

nω
1/n
n

|E|
n
n−1 , ∀E ⋐ B(x, c).

One may then argue verbatim as in [77, Theorem 21.11] to obtain the desired density
bound (where we note that E = E1 implies x ∈ spt |µE|).

In the main text, we frequently employed the fundamental set-replacing argument. It
first appeared in Fact 1.2.10 with technical simplifications. Here, we take the chance to
present the full argument. We will omit the details elsewhere when this technique is used,
since the arguments are largely the same with only minor modifications.

Recall that for u ∈ Liploc(Ω) and K ⋐ Ω, we have defined the energy

JKu (E) = P (E;K)−
∫
E∩K
|∇u|.

Lemma A.2.5 (set-replacing argument). If Ei are local minimizers of Ju in Ω, and
Ei → E in L1

loc(Ω), then E is a local minimizer of Ju in Ω.

Proof. We closely follow [77, Theorem 21.14]. Let F be a competitor, so that E∆F ⋐ Ω.
We may assume that E,Ei, F are all equal to their measure-theoretic interiors.

We claim that there is a choice of K such that E∆F ⋐ K ⋐ Ω, and

Hn−1
(
∂K ∩ ∂∗E

)
= Hn−1

(
∂K ∩ ∂∗F

)
= Hn−1

(
∂K ∩ ∂∗Ei

)
= 0 ∀ i, (A.2.5)

and

lim inf
i→∞

Hn−1
(
∂K ∩ (E∆Ei)

)
= 0. (A.2.6)

To achieve this, we first choose any smooth K0 with E∆F ⋐ K0 ⋐ Ω. For sufficiently
small ε, denote Nε =

{
0 < d(·, K0) < ε

}
the open collar neighborhood of K0. For

0 < t < ε, we denote Kt =
{
d(·, K0) = t}.

It is clear that (A.2.5) holds with K = Kt for all but countably many t. Next,
combining Fatou’s lemma and the coarea formula, we have∫ ε

0

(
lim inf
i→∞

Hn−1
(
∂Kt ∩ (E∆Ei)

))
dt ⩽ lim inf

i→∞

∫ ε

0

Hn−1
(
∂Kt ∩ (E∆Ei)

)
dt

= lim inf
i→∞

∣∣Nε ∩ (E∆Ei)
∣∣ = 0.

Hence (A.2.6) holds with K = Kt for almost every t. This proves our claim.
Now, choose any K ′ with K ⋐ K ′ ⋐ Ω. We compare each Ei with Fi = (F ∩ K) ∪

(Ei \K). By [77, Theorem 16.16], we have

P (Fi;K
′) = P (F ;K) + P (Ei;K

′ \K) +Hn−1
(
∂K ∩ (E∆Ei)

)
.

Here we have used (A.2.5). Using (A.2.5) again, we have

P (Ei;K
′) = P (Ei;K) + P (Ei;K

′ \K).
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Therefore, the comparison JK
′

u (Ei) ⩽ JK
′

u (Fi) implies

P (Ei;K)−
∫
Ei∩K

|∇u| ⩽ P (F ;K)−
∫
F∩K
|∇u|+Hn−1

(
∂K ∩ (E∆Ei)

)
. (A.2.7)

Taking the limit as i→∞, using (A.2.6) and the lower semi-continuity of perimeter, we
obtain

P (E;K)−
∫
Ei∩K

|∇u| ⩽ P (F ;K)−
∫
F∩K
|∇u|.

This proves the lemma.

A.3 The isoperimetric profile

Recall from Section 2.5 that the isoperimetric profile of a manifold is defined as

ip(v) := inf
{
P (E) : E ⋐M, |E| = v

}
.

We define the strong isoperimetric profile

sip(v) = inf
{
P (E) : E ⋐M, |E| ⩾ v

}
,

for all 0 < v < |M |. Its formal inverse, denoted by sip−1 for convenience, is defined as

sip−1(a) = sup
{
|E| : E ⋐M,P (E) ⩽ a

}
.

Clearly sip(v) = infv′⩾v ip(v′). The strong isoperimetric profile has less pathologic be-
havior to be concerned. In particular, sip(v) is always continuous when M is connected,
while the continuity of ip(v) is a delicate problem. See [41, 92] and more recently [7, Corol-
lary 4.16] which address the latter problem. On the other hand, the strong isoperimetric
profile is a non-trivial quantity only for manifolds that are non-degenerate at infinity.
For example, a manifold with finite volume has sip(v) ≡ 0. It is easy to examine that
both sip(v) and sip−1(a) are non-decreasing, and sip−1 is defined with finite value on the
interval

(
0, limv→∞ sip(v)

)
=
(
0, lim infv→∞ ip(v)

)
.

Lemma A.3.1. Suppose M is complete, connected, and has infinite volume. Then sip(v)
is continuous on (0,∞).

Proof. Since sip(v) is non-decreasing, its right continuity at a value v is equivalent to

inf
|E|⩾v

P (E) ⩾ inf
|E|>v

P (E). (A.3.1)

Given any precompact set E with |E| ⩾ v and P (E) ⩽ sip(v) + ε, we choose any geodesic
ball B of perimeter at most ε, such that |B \ E| > 0. Then note that |E ∪ B| > v and
P (E ∪B) ⩽ sip(v) + 2ε. Letting ε → 0 this proves (A.3.1). It remains to prove left
continuity at any fixed v > 0. Denote

a := lim
v′→v−

sip(v′) = sup
v′<v

sip(v′).

Fix a basepoint x0 ∈M . Let R be sufficiently large such that |B(x0, R)| > 2·10nv. For any
ε > 0, there exists δ > 0 such that: for all x ∈ B(x0, R), the unique geodesic ball centered
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at x and with volume δ has perimeter < ε. Denote this geodesic ball by B(x, rx). By
further decreasing δ, we may assume that |B(x, 5rx)| ⩽ 10n|B(x, rx)| for all x ∈ B(x0, R).
By the definition of sip(v), for any v − δ/2 < v′ < v there exists a precompact set E
with |E| ⩾ v′ and P (E) ⩽ sip(v′) + ε ⩽ a + ε. If |E| ⩾ v, then this already implies
sip(v) ⩽ a + ε. Now assume |E| ⩽ v. We claim that there is a point x ∈ B(x0, R) such
that |E ∩ B(x, rx)| ⩽ 1

2
|B(x, rx)|. Otherwise, we would have |E ∩ B(x, rx)| > 1

2
|B(x, rx)|

for all x ∈ B(x0, R). By Vitali’s covering lemma, there is a disjoint countable collection
of balls B(xi, rxi) such that B(xi, 5rxi) covers B(x0, R). Thus

|E| ⩾
∑
|E ∩B(xi, rxi)| ⩾

1

2
· 10−n

∑
|B(xi, 5rxi)| ⩾

1

2
· 10−n|B(x0, R)| > v,

which is a contradiction. After finding the ball B(x, rx), consider the new set E ′ =
E ∪ B(x, rx). We have |E ′| ⩾ |E| + 1

2
|B(x, rx)| > (v − δ/2) + δ/2 ⩾ v and P (E ′) ⩽

P (E) + P (B(x, rx)) ⩽ a + 2ε, hence sip(v) ⩽ a + 2ε. Thus either |E| ⩾ v or |E| ⩽ v we
have obtained sip(v) ⩽ a + 2ε. Taking ε → 0 this implies sip(v) ⩽ a, which proves the
left continuity.

Lemma A.3.2. Suppose M is complete, connected, and has infinite volume. Then either
sip ≡ 0 or sip(v) > 0 for all v > 0.

Proof. Suppose sip(v) is not identically zero but is zero somewhere. By monotonicity
and continuity, there exists a value v0 > 0 such that sip(v0) = 0 but sip(v) > 0 for all
v > v0. By definition, there is a sequence of bounded sets Ek such that |Ek| ⩾ v0 and
P (Ek) ⩽ 1/k. By the maximality of v0, we can assume |Ek| ⩽ 3

2
v0 for all k. For a fixed

k ∈ N, Ek is contained in some bounded connected smooth domain Ω. Enlarging Ω if
necessary, we may assume that |Ω| ⩾ 3v0. Note that this selection of Ω requires the
connectedness and infinite volume of M . By the relative isoperimetric inequality, for all
l > k we have |El ∩ Ω| ⩽ C(Ω)P (El,Ω)n/(n−1) ⩽ C(Ω)l−n/(n−1), therefore |El ∩ Ω| ⩽ v0/2
for sufficiently large l. Now the set Ek ∪ El has volume ⩾ 3v0/2 and perimeter ⩽ 2/k,
hence sip(3v0/2) ⩽ 2/k. Letting k →∞ this yields sip(3v0/2) = 0, which contradicts the
maximality of v0.

Corollary A.3.3. Suppose M is complete, connected, and has infinite volume. If it holds
lim infv→∞ ip(v) > 0, then ip(v) > 0 for all v > 0.

Proof. The condition implies that sip(v) > 0 for some v > 0. Then Lemma A.3.2 implies
that sip(v) > 0, hence ip(v) > 0, for all v > 0.

A.4 Strictly outward minimizing hull

In this section, all the equality and inclusion of sets are up to an error with zero
measure. The role of this section is to prove Lemma 1.2.12. Recall that a set E ⊂ Ω is
(strictly) locally outward minimizing, if for all F with E ⊂ F ⊂ Ω (resp. for all such F
with |F \E| > 0), and domain K satisfying F \E ⋐ K ⋐ Ω, it holds P (E;K) ⩽ P (F ;K)
(resp. P (E;K) < P (F ;K)). Also, recall the definition of minimizing hulls:

Definition A.4.1. Given a set Q ⊂ Ω with locally finite perimeter, denote

F(Q) =
{
F : Q ⊂ F ⊂ Ω and F is strictly outward minimizing

}
.

A set E ∈ F(Q) is called the minimizing hull of Q in Ω, if E ⊂ E ′ for all E ′ ∈ F(Q).
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Here we remark that: the set F(Q) is nonempty, since Ω is an element. The following
lemma shows the uniqueness of minimizing hull.

Lemma A.4.2. If E1, E2 are both strictly outward minimizing, then so is E1∩E2. There-
fore, the minimizing hull of a set Q is unique up to measure zero, if exists.

Proof. Suppose F ⊃ E1 ∩ E2 with F \ (E1 ∩ E2) ⋐ K ⋐ Ω. We may compare

P (E1;K) ⩽ P (F ∪ E1;K) ⇒ P (F ∩ E1;K) ⩽ P (F ;K). (A.4.1)

Then we may compare

P (E2;K) ⩽ P
(
(F ∩ E1) ∪ E2;K

)
⇒ P (F ∩ E1 ∩ E2;K) ⩽ P (F ∩ E1;K). (A.4.2)

Combining (A.4.1) (A.4.2) we obtain P (E1 ∩ E2;K) ⩽ P (F ;K). If |F \ (E1 ∩ E2)| > 0,
then either |F \ E1| > 0 or

∣∣(F ∩ E1) \ E2

∣∣ > 0. Hence one of the inequalities in (A.4.1)
(A.4.2) must be strict. This shows the strict minimization of E1 ∩ E2.

If the minimizing hull E happens to be precompact, then it obviously minimizes the
volume among all elements in F(Q). Note that Lemma A.4.2 implies the converse: if
E ⋐ Ω and E is the least volume element in F(Q), then E is the minimizing hull of Q.

Now we restrict ourselves the setup of Lemma 1.2.12 and consider case where E ⋐ Ω.
The following definition follows [42, Definition 2.6]:

Definition A.4.3 (least area problem and maximal volume solution).

Given a set Q ⋐ Ω with finite perimeter. We say that a set E with Q ⊂ E ⋐ Ω is a
least area solution outside Q in Ω, if

P (E) = inf
{
P (F ) : Q ⊂ F ⋐ Ω

}
.

We say that a set E ⋐ Ω is a maximal volume least area solution (outside Q in Ω), if

|E| = sup
{
|F | : F is a least area solution outside Q in Ω

}
.

The following facts are straightforward to verify, by repeatedly using (A.1.9).

Lemma A.4.4. If E1, E2 are both least area solutions outside Q, so is E1∪E2. Therefore,
the maximal volume least area solution is unique up to measure zero, if it exists. The
maximal volume solution is always strictly outward minimizing. If E is the maximal
volume solution, and E ′ is another least area solution, then E ′ ⊂ E.

The following is our main result of this section, strengthening [42, Theorem 2.16]:

Lemma A.4.5 (= Lemma 1.2.12).

Given Q ⋐ Ω with finite perimeter. The following statements are equivalent:

(i) There exists a maximal volume least area solution E1 with E1 ⋐ Ω.

(ii) There exists a minimizing hull E2 of Q in Ω, with E2 ⋐ Ω.

Moreover, we have E1 = E2 up to measure zero, if either of them exists.
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Proof. (i)⇒ (ii). Assume E1 exists as in (i). By Lemma A.4.4, E1 is strictly outward
minimizing. Suppose F ⊃ Q is another strictly outward minimizing set. Note that
P (F ∩ E1) ⩾ P (E1) by the minimization of E1, which implies P (F ∪ E1;K) ⩽ P (F ;K)
for all K with E1 ⋐ K ⋐ Ω. This implies E1 ⊂ F up to measure zero, so (ii) follows.

(ii)⇒ (i). Suppose that E2 exists as in (ii). We first show that E2 is a least area solution
outside Q in Ω. Suppose this is not true, so that there is another F with Q ⊂ F ⋐ Ω
and P (F ) < P (E2). Since P (F ∪ E2) ⩾ P (E2) by the minimization of E2, we have
P (F ∩ E2) < P (F ). Consider the following least area problem with obstacles

A = inf
{
P (G) : Q ⊂ G ⊂ E2

}
,

and the volume maximizing problem among least area sets

V = sup
{
|G| : Q ⊂ G ⊂ E2, P (G) = A

}
.

By the classical compactness theorem, there exists a maximal volume solution G0 with
|G0| = V , P (G0) = A and Q ⊂ G0 ⊂ E2. We claim that G0 is strictly outward minimizing
in Ω. Suppose H is such that G0 ⊂ H ⋐ Ω. By the minimizing property of E2, we have

P (H ∪ E2) ⩾ P (E2) ⇒ P (H ∩ E2) ⩽ P (H). (A.4.3)

By the minimizing property of G0, we have

P (G0) ⩽ P (H ∩ E2). (A.4.4)

These imply that P (G0) ⩽ P (H). Moreover, if equality holds then (A.4.3) (A.4.4) also
attains equality. By the strict minimizing property of G0 (in E2) and E2 (in Ω), it holds
H = G0 up to measure zero. This proves the strict outward minimizing of G0. We have
now found a strictly outward minimizing set G0 inside E2, with P (G0) ⩽ P (F ∩ E2) ⩽
P (F ) < P (E2). Hence |E2 \G0| > 0, contradicting the volume minimization of E2.

We have proved that E2 is a least area solution. Suppose there is another solu-
tion F with Q ⊂ F ⋐ Ω and P (F ) = P (E2). Since P (F ∩ E2) ⩾ P (F ), we conclude
P (F ∪ E2) ⩽ P (E2). This implies F ⊂ E2 by the minimizing property of E2, hence E2 is
the maximal volume solution. The proof of the theorem is complete.

A.5 Locally Lipschitz domains

Fix a Riemannian manifold (M, g). We say that a domain Ω is locally Lipschitz, if for
each x ∈ ∂Ω there is a cylindrical geodesic coordinate chart centered at x, in which Ω is
the sub-graph of a Lipschitz function. By Rademacher’s theorem, the outer unit normal
of Ω (denoted by νΩ) exists Hn−1-almost everywhere on ∂Ω. When a locally Lipschitz
domain is precompact, we will simply call it Lipschitz.

We prove the following auxiliary lemmas about locally Lipschitz domains.

Lemma A.5.1 (truncation).

Suppose Ω is locally Lipschitz. Then for all K ⋐ M there exists a Lipschitz domain
Ω′ ⊂ Ω with Ω′ ⋐M , such that Ω ∩K = Ω′ ∩K.
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Lemma A.5.2 (inner approximation).
Suppose Ω is locally Lipschitz. Then there is a sequence of Lipschitz domains Ω1 ⋐

Ω2 ⋐ · · · ⋐ Ω, with
⋃

Ωi = Ω and |µΩi|⇀ |µΩ| weakly as measures.
In addition, for any set E with locally finite perimeter, we can choose Ωi in a way

such that Hn−1
(
∂∗E ∩ ∂∗Ωi

)
= 0 for all i.

Lemma A.5.3 (existence of collar neighborhoods).
Suppose Ω ⋐ M is Lipschitz. Then there is a neighborhood N ⊂ Ω of ∂Ω and a

Lipschitz map Φ : N → ∂Ω with Φ|∂Ω = id.

We first introduce some preliminary setups. A smooth vector field X is said to be
(inward) transverse to Ω, if −⟨νΩ, X⟩ is locally uniformly positive on ∂Ω. By patching
the local vector fields−∂/∂xn via a partition of unity, it is not hard to show that transverse
vector fields always exist.

We say that a transverse vector field X is complete, if the family of diffeomorphisms
generated by X (denoted by {ΦX

t }) exists for 0 ⩽ t ⩽ 1. From any transverse vector field
X we can always produce a complete one. For example, we can choose a complete metric

g′ (which may be different from the original one) and replace X by X/
(
1 + |X|2g′

)1/2
.

Given a complete transverse vector field X. The following properties of ΦX
t are not

hard to verify. First, for all t > 0 the domain ΦX
t (Ω) is locally Lipschitz, and we have

ΦX
t (Ω) ⊂ Ω and ∂ΦX

t (Ω)∩ ∂ΦX
s (Ω) = ∅ for all s ̸= t. Next, since ΦX

t locally C1 converges
to the identity as t→ 0, we have

|µΦXt (Ω)|⇀ |µΩ|.

Proof of Lemma A.5.1.
Find domains K ⋐ K1 ⋐ K2 ⋐ K3 ⋐ K4 ⋐ K5 ⋐M . We first push Ω slightly inward.

Choose a cutoff function η with 0 ⩽ η ⩽ 1, spt η ⊂ M \K1, and η|M\K2 > 0. Consider

the family of diffeomorphisms {ΦηX
t } generated by ηX, which exists for all t ⩽ 1. Choose

Ω′′ = ΦηX
t (Ω) ⊂ Ω. For sufficiently small t, we have Ω′′ ∩ K = Ω ∩ K. Also, it is clear

that ∂Ω ∩ ∂Ω′ ⊂ K2.
For the next step, let us perturb Ω′′ in K5 \ K2, so that it has smooth boundary in

K4 \K3. Denote U = ∂Ω′′∩ (K5 \K2) and N =
⋃

−ε<t<ε ΦX
t (U), for some small enough ε.

Note that we have topologically N ∼= U×(−ε, ε), where the vertical direction is generated
by X. Let π : N → U be the natural projection, and t : N → (−ε, ε) be the vertical
coordinate function. Denote the set V = π

(
N ∩ (K4 \ K3)

)
. Note that for sufficiently

small ε, we have V ⋐ U and N ⋐ Ω.
Note that N is diffeomorphic to an abstract line bundle, hence has a smooth section.

This means that there is a smooth open submanifold Σ ⊂ N , such that π|Σ : Σ → U is
bijective and locally bi-Lipschitz. Denote f = t◦(π|Σ)−1 : U → (−ε, ε). Let φ : U → [0, 1]
be a Lipschitz function such that sptφ ⋐ U and φ ≡ 1 on V . The function φ is used to
merge Σ with the original boundary ∂Ω′′.

Having these setups, consider the domain

Ω′′′ = (Ω \N) ∪
{
x ∈ N : t(x) > φ(π(x)) · f(π(x))}.

By our way of construction, it follows that Ω′′′ ⊂ Ω, and Ω′′′ is locally Lipschitz, and
∂Ω′′′ ∩ (K4 \K3) = Σ ∩ (K4 \K3) is a smooth hypersurface.

Having found Ω′′′, it is easy to find a smooth domain L such that K3 ⋐ L ⋐ K4, and
∂L intersects ∂Ω′′′ transversely. It follows that Ω′′′ ∩ L is the desired bounded Lipschitz
domain.
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Proof of Lemma A.5.2.
By Lemma A.5.1, there is a sequence of bounded Lipschitz domains Ω1 ⊂ Ω2 ⊂ · · · ⊂

Ω, such that for each K ⋐ M we have Ωi ∩ K = Ω ∩ K for all large i. Let Xi be
an transverse vector field of Ωi. Recall that such Xi are constructed by patching the
local vector fields ∂/∂z. Hence, we can constructed Xi in the way such that: for each
K ⋐ M , it holds Xi|K = Xi+1|K = Xi+2|K = · · · for all large i. Then for some sequence
t1 > t2 > · · · → 0, the choice Ωi = ΦXi

ti (Ωi) satisfies the requirement of the lemma.
The fact that we can achieve Hn−1(∂∗E ∩ ∂∗Ωi) = 0 for a given E follows from the

general fact that for a measurable set X and a family of mutually disjoint sets {Yt}, we
have µ(X ∩Yt) = 0 for all but countably many t. Thus in the above construction, we may
slightly decrease each ti so that Hn−1(∂∗E ∩ ∂∗Ωi) = 0.

Proof of Lemma A.5.3.
Let X be a complete inward transversal vector field of Ω, and {ΦX

t }0⩽t⩽1 be the family
of diffeomorphisms generated by X. Then take

N =
⊔

0⩽t⩽1/2

ΦX
t (∂Ω)

and define Φ so that it maps ΦX
t (y) to y, for all y ∈ ∂Ω, t ∈ [0, 1/2]. It is easily verified

that N and Φ defined in this way satisfy the desired conditions.

A.6 Miscellaneous useful statements

This section contains several technical lemmas that are useful in the main text.

Lemma A.6.1 (inner approximation of sets).
Fix a background metric on M . Suppose Ωi,Ω ⊂M are sets with locally finite perime-

ter, such that χΩi → χΩ in L1
loc(M) and |µΩi |⇀ |µΩ| weakly as measures in M . Then for

any K ⋐ M with Hn−1(∂∗Ω ∩ ∂K) = 0 and any set A ⊂ Ω with locally finite perimeter,
we have

P (A;K) = lim
i→∞

P
(
A ∩ Ωi;K

)
.

Proof. By the lower semi-continuity of perimeter,

P (A;K) ⩽ lim inf
i→∞

P
(
A ∩ Ωi;K

)
. (A.6.1)

Moreover, by Lemma A.1.4(i)(iii) we have

P (Ω;K) ⩽ lim inf
i→∞

P
(
A ∪ Ωi;K

)
, P (Ω;K) = lim

i→∞
P (Ωi;K). (A.6.2)

To show the reverse direction of (A.6.1), we note that

P (A;K) + P
(
Ωi;K

)
⩾ P

(
A ∩ Ωi;K

)
+ P

(
A ∪ Ωi;K

)
.

Taking i→∞ and using (A.6.2), we obtain

P (A;K) + P
(
Ω;K

)
⩾ lim sup

i→∞
P
(
A ∩ Ωi;K

)
+ P (Ω;K),

which implies the desired result.
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Remark A.6.2 (rectifiability of geodesic spheres). Let M be a complete manifold. Con-
sider the family of geodesic balls Br = B(x0, r). By the main theorem of [58], for almost
every r ∈ R the geodesic sphere ∂Br is a smooth hypersurface except at a singular set of
zero (n− 1)-Hausdorff measure. Hence for these r, we have

Br = (Br)
(1), M \Br = (M \Br)

(1)

up to zero (n− 1)-Hausdorff measure.

Lemma A.6.3 (criterion for containing a cone). Let Ω ⊂ Rn be a convex domain. Fix
θ ∈ (0, π/2). Suppose E ⊂ Rn has locally finite perimeter. Moreover, assume that

ess inf
∂∗E∩Ω

⟨νE, en⟩ ⩾ cos θ,

If E has nonzero lower density at a point x = (x′, xn) ∈ Ω, then

E(1) ⊃ Ω ∩
{

(y′, yn) ∈ Rn : yn < xn − |y′ − x′| tan θ
}
. (A.6.3)

Here, we denote en = (0, · · · , 0, 1) ∈ Rn, and define the lower density of a set E at a
point x as

Θ(E;x) = lim inf
r→0

|E ∩B(x, r)|
ωnrn

.

Proof of Lemma A.6.3.
Let ρε (ε > 0) be a family of standard mollifiers, and set fε = χE ∗ ρε. Let Ω′ ⋐ Ω

be another convex domain. For any smooth vector field X with supp(X) ⊂ Ω′ and any
ε < d(∂Ω′, ∂Ω), we compute

−
∫
Rn
∇fε ·X =

∫
Rn
fε divX =

∫
E

div(ρε ∗X) =

∫
∂∗E

(ρε ∗X) · νE dHn−1.

Let w be any constant vector field with ⟨w, en⟩ ⩾ sin θ (thus it holds ⟨νE, w⟩ ⩾ 0 a.e.).
Setting X = φw for arbitrary φ ∈ C∞

0 (Ω′), φ ⩾ 0, we obtain

−
∫
Rn
φ
∂fε
∂w

=

∫
∂∗E

(ρε ∗ φ)⟨w, νE⟩ ⩾ 0.

This implies ∂fε
∂w

⩽ 0 in Ω′. Let Θ > 0 be the lower density of E at the given point x.
For all sufficiently small ε we have fε(x) ⩾ 1

2
Θ, and it follows by the convexity of Ω′ that

fε ⩾ 1
2
Θ in the region

Q := Ω′ ∩
{

(y′, yn) : yn < xn − |y′ − x′| tan θ
}
.

Taking ε→ 0, we conclude that E has lower density at least 1
2
Θ almost everywhere in Q.

Therefore E occupies full measure in Q. The result follows by taking Ω′ → Ω.

Lemma A.6.4 (Bernstein theorem in a half space).
Let E ⊂ {xn < 0} be nonempty and locally perimeter-minimizing in Rn. Then E must

be a half space, i.e. there exists c > 0 such that E =
{

(x′, xn) : xn < −c
}
.

Proof. Choose x ∈ ∂∗E. As a consequence of the classical monotonicity formula, there
exists a sequence λi → ∞ such that the limit E∞ = limi→∞ λi(E − x) exists and is a
perimeter-minimizing cone. We refer to [77, Theorem 28.17] for the precise argument.
Since E∞ ⊂ {xn ⩽ 0} and 0 ∈ spt

(
|DχE∞|

)
, it follows by a strong maximum principle

[110, Theorem 4] that ∂E∞ = {xn = 0}. By the monotonicity formula again, ∂E itself is
a cone centered at x. Thus ∂E must be a flat hyperplane.



Appendix B

Notations

The following is a list of frequent notations. When the symbols in this list are used,
they always have the meaning indicated here unless specified by the context.

� M : a smooth, connected, oriented manifold. A background Riemannian metric g
always comes equipped on M , which we often make implicit.

� Ω: a domain (i.e. open set) in M , which we always assume to be connected.

� K: a domain that is usually precompact.

� E,F : a set which is usually of locally finite perimeter.

� Σ: a two-sided embedded hypersurface.

� A,H, ν: the second fundamental form, mean curvature and unit normal of a (two-
sided) hypersurface.

� Et;E
+
t : we set Et(u) = {u < t}, E+

t (u) = {u ⩽ t}. When u is defined in a domain
Ω, these sets are viewed as subsets of Ω.

� u∂: used in Chapter 3 to denote the boundary trace of BV functions.

Our sign conventions are as follows:

� When a hypersurface is the boundary of a domain, its unit normal points outward.

� For a hypersurface, we have A(X, Y ) = ⟨∇Xν, Y ⟩ and H = trΣA. Hence, the unit
sphere

{
|x| = 1

}
⊂ Rn has mean curvature n− 1.

� The Riemannian curvature is defined as R(X, Y )Z = (∇X∇Y −∇Y∇X −∇[X,Y ])Z.

� The Laplacian is defined as ∆ =
∑

i∇ei∇ei , for any orthonormal frame {ei}.
We include the definition of several function spaces:

� u ∈ Lip(Ω), if there is a constant Λ so that |u(x)− u(y)| ⩽ Λd(x, y), ∀x, y ∈ Ω.

� u ∈ Liploc(Ω), if u ∈ Lip(K) for all K ⋐ Ω;

� u ∈ Liploc(Ω), if u ∈ Lip(K ∩Ω) for all K ⋐M . Namely, the regularity holds up to
∂Ω but remains local in M .

� u ∈ BVloc(Ω), if u ∈ BV(K ∩ Ω) for all K ⋐ M . (Note: the space BV(Ω) is still in
the traditional sense: u ∈ BV(Ω) means u ∈ L1(Ω) and ||Du||(Ω) <∞.)

� u ∈ Lip0(Ω), if u ∈ Lip(Ω) and spt(u) ⋐ Ω.

The terminologies in the following list always have their special meanings:

� σ(x; Ω, g), σ(x; Ω): the regular radius, see Definition 2.4.2.

� IMCF(((Ω))), IMCF(((Ω, g))): see Definition 2.1.2.

� IVP(((Ω;E0))), IVP(((Ω, g;E0))): see Definition 2.1.8.
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� IMCF(((Ω)))+OBS(((∂Ω))), IMCF(((Ω, g)))+OBS(((∂Ω))): see Definition 3.3.2.

� IVP(((Ω;E0)))+OBS(((∂Ω))), IVP(((Ω, g;E0)))+OBS(((∂Ω))): see Definition 3.3.6.

� The set-replacing argument: this refers to the standard technique appearing in the
proof of Lemma A.2.5.

We recall the following standard notations:

� A ⋐ B: A is precompact in B, meaning that the closure of A is compact in B.
Reminder: A ⋐ B does not mean that A is compact, since A need not be closed.

� B(x, r): the open ball of radius r centered at x.

� |Rm | and inj: the norm of Riemannian tensor and the global injectivity radius.
These are used in contexts related to bounded geometry.

� χE: the indicator function of E.

� |E|: the volume of E. In some contexts, we also use |Σ| to denote the area of Σ.

� Hk(A): the k-dimensional Hausdorff measure of A.

� µi ⇀ µ: the weak convergence of measures, in duality with the space of continuous
functions with compact support.

� Sn: the round n-sphere.

� ωn: the volume of Sn.
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[3] F. Almgren, Existence and regularity almost everywhere of solutions to elliptic varia-
tional problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no.165, viii+199
pp.

[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discon-
tinuity problems, Oxford Math. Monogr., The Clarendon Press, Oxford University
Press, New York, 2000. xviii+434 pp.

[5] B. Andrews, B. Chow, C. Guenther, M. Langford, Extrinsic geometric flows, Grad.
Stud. Math. 206, American Mathematical Society, Providence, RI, 2020. xxviii+759
pp.

[6] G. Antonelli, M. Fogagnolo, S. Nardulli, M. Pozzetta, Positive mass and isoperime-
try for continuous metrics with nonnegative scalar curvature, preprint (2024),
arxiv:2403.15972.

[7] G. Antonelli, E. Pasqualetto, M. Pozzetta, D. Semola, Sharp isoperimetric compar-
ison on non collapsed spaces with lower Ricci bounds, accepted by Ann. Sci. Éc.
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